A large class of N=2 quantum field theories admits a BPS quiver description, and the study of their BPS spectra is then reduced to a representation theory problem. In such theories the coupling to a line defect can be modeled by framed quivers. The associated spectral problem characterizes the line defect completely. Framed BPS states can be thought of as BPS particles bound to the defect. We identify the framed BPS degeneracies with certain enumerative invariants associated with the moduli spaces of stable quiver representations. We develop a formalism based on equivariant localization to compute explicitly such BPS invariants, for a particular choice of stability condition. Our framework gives a purely combinatorial solution to this problem. We detail our formalism with several explicit examples.
Quivers, Line Defects and Framed BPS Invariants
Cirafici M
2018-01-01
Abstract
A large class of N=2 quantum field theories admits a BPS quiver description, and the study of their BPS spectra is then reduced to a representation theory problem. In such theories the coupling to a line defect can be modeled by framed quivers. The associated spectral problem characterizes the line defect completely. Framed BPS states can be thought of as BPS particles bound to the defect. We identify the framed BPS degeneracies with certain enumerative invariants associated with the moduli spaces of stable quiver representations. We develop a formalism based on equivariant localization to compute explicitly such BPS invariants, for a particular choice of stability condition. Our framework gives a purely combinatorial solution to this problem. We detail our formalism with several explicit examples.File | Dimensione | Formato | |
---|---|---|---|
s00023-017-0611-0.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
1.39 MB
Formato
Adobe PDF
|
1.39 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2923475_s00023-017-0611-0-PostPrint.pdf
accesso aperto
Descrizione: Post Print VQR3
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Digital Rights Management non definito
Dimensione
1.61 MB
Formato
Adobe PDF
|
1.61 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.