In this paper we use the theory of Faber polynomials for solving N-dimensional linear initial value problems. In particular, we use Faber polynomials to approximate the evolution operator creating the so-called exponential integrators. We also provide a consistence and convergence analysis. Some tests where we compare our methods with some Krylov exponential integrators are finally shown.
Titolo: | Solving initial value problems by Faber polynomials |
Autori: | |
Data di pubblicazione: | 2003 |
Stato di pubblicazione: | Pubblicato |
Rivista: | |
Abstract: | In this paper we use the theory of Faber polynomials for solving N-dimensional linear initial value problems. In particular, we use Faber polynomials to approximate the evolution operator creating the so-called exponential integrators. We also provide a consistence and convergence analysis. Some tests where we compare our methods with some Krylov exponential integrators are finally shown. |
Handle: | http://hdl.handle.net/11368/2925471 |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1002/nla.287 |
Appare nelle tipologie: | 1.1 Articolo in Rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.