The paper deals with the computation of functions of fractional powers of differential operators. The spectral properties of these operators naturally suggest the use of rational approximations. In this view we analyze the convergence properties of the shift-and-invert Krylov method applied to operator functions arising from the numerical solution of differential equations involving fractional diffusion.

Krylov subspace methods for functions of fractional differential operators

Moret, Igor;Novati, Paolo
2019-01-01

Abstract

The paper deals with the computation of functions of fractional powers of differential operators. The spectral properties of these operators naturally suggest the use of rational approximations. In this view we analyze the convergence properties of the shift-and-invert Krylov method applied to operator functions arising from the numerical solution of differential equations involving fractional diffusion.
19-mar-2018
Pubblicato
http://www.ams.org/journals/mcom/2019-88-315/S0025-5718-2018-03332-4/
File in questo prodotto:
File Dimensione Formato  
mcom2019.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 317.81 kB
Formato Adobe PDF
317.81 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2925793
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact