The paper deals with the computation of functions of fractional powers of differential operators. The spectral properties of these operators naturally suggest the use of rational approximations. In this view we analyze the convergence properties of the shift-and-invert Krylov method applied to operator functions arising from the numerical solution of differential equations involving fractional diffusion.
Krylov subspace methods for functions of fractional differential operators
Moret, Igor;Novati, Paolo
2019-01-01
Abstract
The paper deals with the computation of functions of fractional powers of differential operators. The spectral properties of these operators naturally suggest the use of rational approximations. In this view we analyze the convergence properties of the shift-and-invert Krylov method applied to operator functions arising from the numerical solution of differential equations involving fractional diffusion.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
mcom2019.pdf
Accesso chiuso
Descrizione: Articolo principale
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
317.81 kB
Formato
Adobe PDF
|
317.81 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.