Aerosols can act as cloud condensation nuclei and/or ice-nucleating particles (INPs), influencing cloud properties. In particular, INPs show a variety of different and complex mechanisms when interacting with water during the freezing process. To gain a fundamental understanding of the heterogeneous freezing mechanisms, studies with proxies for atmospheric INPs must be performed. Graphene and its derivatives offer suitable model systems for soot particles, which are ubiquitous aerosols in the atmosphere. In this work, we present an investigation of the ice nucleation activity (INA) of different types of graphene and graphene oxides. Immersion droplet freezing experiments as well as additional analytical analyses, such as X-ray photoelectron spectroscopy, Raman spectroscopy, and transmission electron microscopy, were performed. We show within a group of samples that a highly ordered graphene lattice (Raman G band intensity >50%) can support ice nucleation more effectively than a lowly ordered graphene lattice (Raman G band intensity <20%). Ammonia-functionalized graphene revealed the highest INA of all samples. Atmospheric ammonia is known to play a primary role in the formation of secondary particulate matter, forming ammonium-containing aerosols. The influence of functionalization on interactions between the particle interface and water molecules, as well as on hydrophobicity and agglomeration processes, is discussed.

Ice Nucleation Activity of Graphene and Graphene Oxides

Iglesias, Daniel;Marchesan, Silvia;
2018-01-01

Abstract

Aerosols can act as cloud condensation nuclei and/or ice-nucleating particles (INPs), influencing cloud properties. In particular, INPs show a variety of different and complex mechanisms when interacting with water during the freezing process. To gain a fundamental understanding of the heterogeneous freezing mechanisms, studies with proxies for atmospheric INPs must be performed. Graphene and its derivatives offer suitable model systems for soot particles, which are ubiquitous aerosols in the atmosphere. In this work, we present an investigation of the ice nucleation activity (INA) of different types of graphene and graphene oxides. Immersion droplet freezing experiments as well as additional analytical analyses, such as X-ray photoelectron spectroscopy, Raman spectroscopy, and transmission electron microscopy, were performed. We show within a group of samples that a highly ordered graphene lattice (Raman G band intensity >50%) can support ice nucleation more effectively than a lowly ordered graphene lattice (Raman G band intensity <20%). Ammonia-functionalized graphene revealed the highest INA of all samples. Atmospheric ammonia is known to play a primary role in the formation of secondary particulate matter, forming ammonium-containing aerosols. The influence of functionalization on interactions between the particle interface and water molecules, as well as on hydrophobicity and agglomeration processes, is discussed.
File in questo prodotto:
File Dimensione Formato  
acs.jpcc.7b10675.pdf

accesso aperto

Descrizione: PDF articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 6.67 MB
Formato Adobe PDF
6.67 MB Adobe PDF Visualizza/Apri
jp7b10675_si_001.pdf

accesso aperto

Descrizione: Supporting information
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 951.37 kB
Formato Adobe PDF
951.37 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2926976
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 30
social impact