Resveratrol (RES) is a polyphenolic compound found in grapes, peanuts, and in some berries. RES has been reported to exhibit antioxidant, anti-inflammatory, anti-proliferative properties, and to target mitochondrial- related pathways in mammalian cells and animal models. Therefore, RES is currently advised as supplement in the diet of elderly individuals. Although it is hypothesized that some of RES beneficial actions likely arise from its action on the skeletal muscle, the investigation of RES effects on this tissue remains still elusive. This study reports the effects of a 0,04% RES-supplemented diet for six months, on the skeletal muscle properties of C57/ BL6 aging mice. The analysis of the morphology, protein expression, and functional-mechanical properties of selected skeletal muscles in treated compared to control mice, revealed that treated animals presented less tubular aggregates and a better resistance to fatigue in an ex-vivo contraction test, suggesting RES as a good candidate to reduce age-related alterations in muscle.
Resveratrol treatment reduces the appearance of tubular aggregates and improves the resistance to fatigue in aging mice skeletal muscles
Emiliana Giacomello
2018-01-01
Abstract
Resveratrol (RES) is a polyphenolic compound found in grapes, peanuts, and in some berries. RES has been reported to exhibit antioxidant, anti-inflammatory, anti-proliferative properties, and to target mitochondrial- related pathways in mammalian cells and animal models. Therefore, RES is currently advised as supplement in the diet of elderly individuals. Although it is hypothesized that some of RES beneficial actions likely arise from its action on the skeletal muscle, the investigation of RES effects on this tissue remains still elusive. This study reports the effects of a 0,04% RES-supplemented diet for six months, on the skeletal muscle properties of C57/ BL6 aging mice. The analysis of the morphology, protein expression, and functional-mechanical properties of selected skeletal muscles in treated compared to control mice, revealed that treated animals presented less tubular aggregates and a better resistance to fatigue in an ex-vivo contraction test, suggesting RES as a good candidate to reduce age-related alterations in muscle.File | Dimensione | Formato | |
---|---|---|---|
toniolo, 2018.pdf
Accesso chiuso
Descrizione: Articolo principale
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
2.31 MB
Formato
Adobe PDF
|
2.31 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2928052_toniolo, 2018-PostPrint.pdf
accesso aperto
Descrizione: Post Print VQR3
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Digital Rights Management non definito
Dimensione
2.74 MB
Formato
Adobe PDF
|
2.74 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.