Log-house is an ancient construction technology based on the superposition of linear timber logs, connected to the orthogonal walls by a system of carvings, notches and corner joints. Due to the fact that this solution is widely used in constructions located in seismic or windy areas, the in-plane behaviour of walls represents an attractive research topic. In this paper, major outcomes of a Finite-Element (FE) numerical investigation carried out on single corner joints currently in use for log-house buildings are discussed under different loading conditions (i.e., in-plane lateral and vertical compressive loads), including parametric analyses to capture the key aspects of their typical structural response. Careful consideration is paid for the elastic stiffness of such joints, being of primary interest for design purposed. At the same time, a linear analytical formulation is presented, with the aim of providing a simple but useful tool in support of design, and especially to estimate the maximum lateral displacement/resistance for a given log-house wall when subjected to in-plane lateral forces. There, the intrinsic mechanical features of corner joints and related aspects are properly considered (i.e., static friction phenomena, as well as the presence of small gaps, etc.). The analytical model, in addition, takes advantage of the numerically predicted joint stiffness values, being dependent on several parameters. As shown, rather good agreement is obtained between the FE model output, the analytical predictions and past reference experimental/numerical results available in the literature for full-scale log-house walls under in-plane lateral loads, hence suggesting the potential of the proposed approach. In conclusion, possible Force-Preload-Displacement (FPD) charts are presented, to act as simplified tools for preliminary design considerations.

Shear Performance Assessment of Timber Log-House Walls under In-Plane Lateral Loads via Numerical and Analytical Modelling

Bedon, Chiara
Membro del Collaboration Group
;
2018-01-01

Abstract

Log-house is an ancient construction technology based on the superposition of linear timber logs, connected to the orthogonal walls by a system of carvings, notches and corner joints. Due to the fact that this solution is widely used in constructions located in seismic or windy areas, the in-plane behaviour of walls represents an attractive research topic. In this paper, major outcomes of a Finite-Element (FE) numerical investigation carried out on single corner joints currently in use for log-house buildings are discussed under different loading conditions (i.e., in-plane lateral and vertical compressive loads), including parametric analyses to capture the key aspects of their typical structural response. Careful consideration is paid for the elastic stiffness of such joints, being of primary interest for design purposed. At the same time, a linear analytical formulation is presented, with the aim of providing a simple but useful tool in support of design, and especially to estimate the maximum lateral displacement/resistance for a given log-house wall when subjected to in-plane lateral forces. There, the intrinsic mechanical features of corner joints and related aspects are properly considered (i.e., static friction phenomena, as well as the presence of small gaps, etc.). The analytical model, in addition, takes advantage of the numerically predicted joint stiffness values, being dependent on several parameters. As shown, rather good agreement is obtained between the FE model output, the analytical predictions and past reference experimental/numerical results available in the literature for full-scale log-house walls under in-plane lateral loads, hence suggesting the potential of the proposed approach. In conclusion, possible Force-Preload-Displacement (FPD) charts are presented, to act as simplified tools for preliminary design considerations.
2018
1-ago-2018
Pubblicato
File in questo prodotto:
File Dimensione Formato  
buildings-08-00099-v2.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 5.09 MB
Formato Adobe PDF
5.09 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2928171
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 17
social impact