We study the homogeneous artinian ideals of the polynomial ring K[x,y,z], generated by the homogenous polynomials of degree d which are invariant under an action of the cyclic group ℤ/dℤ, for any d≥3. We prove that they are all monomial Togliatti systems, and that they are minimal if the action is defined by a diagonal matrix having on the diagonal (1,e,e^a), where e is a primitive d-th root of the unity. We get a complete description when d is prime or a power of a prime. We also establish the relation of these systems with linear Ceva configurations.

Togliatti systems and Galois coverings

MEZZETTI, EMILIA;
2018

Abstract

We study the homogeneous artinian ideals of the polynomial ring K[x,y,z], generated by the homogenous polynomials of degree d which are invariant under an action of the cyclic group ℤ/dℤ, for any d≥3. We prove that they are all monomial Togliatti systems, and that they are minimal if the action is defined by a diagonal matrix having on the diagonal (1,e,e^a), where e is a primitive d-th root of the unity. We get a complete description when d is prime or a power of a prime. We also establish the relation of these systems with linear Ceva configurations.
19-mag-2018
Pubblicato
https://doi.org/10.1016/j.jalgebra.2018.05.014
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0021869318303235-main.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 537.95 kB
Formato Adobe PDF
537.95 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2929099_1-s2.0-S0021869318303235-main-PostPrint.pdf

accesso aperto

Descrizione: Post Print VQR3
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2929099
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 9
social impact