We study the homogeneous artinian ideals of the polynomial ring K[x,y,z], generated by the homogenous polynomials of degree d which are invariant under an action of the cyclic group ℤ/dℤ, for any d≥3. We prove that they are all monomial Togliatti systems, and that they are minimal if the action is defined by a diagonal matrix having on the diagonal (1,e,e^a), where e is a primitive d-th root of the unity. We get a complete description when d is prime or a power of a prime. We also establish the relation of these systems with linear Ceva configurations.
Togliatti systems and Galois coverings
MEZZETTI, EMILIA;
2018-01-01
Abstract
We study the homogeneous artinian ideals of the polynomial ring K[x,y,z], generated by the homogenous polynomials of degree d which are invariant under an action of the cyclic group ℤ/dℤ, for any d≥3. We prove that they are all monomial Togliatti systems, and that they are minimal if the action is defined by a diagonal matrix having on the diagonal (1,e,e^a), where e is a primitive d-th root of the unity. We get a complete description when d is prime or a power of a prime. We also establish the relation of these systems with linear Ceva configurations.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0021869318303235-main.pdf
Accesso chiuso
Descrizione: Articolo principale
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
537.95 kB
Formato
Adobe PDF
|
537.95 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2929099_1-s2.0-S0021869318303235-main-PostPrint.pdf
accesso aperto
Descrizione: Post Print VQR3
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Digital Rights Management non definito
Dimensione
1.01 MB
Formato
Adobe PDF
|
1.01 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.