We study the homogeneous artinian ideals of the polynomial ring K[x,y,z], generated by the homogenous polynomials of degree d which are invariant under an action of the cyclic group ℤ/dℤ, for any d≥3. We prove that they are all monomial Togliatti systems, and that they are minimal if the action is defined by a diagonal matrix having on the diagonal (1,e,e^a), where e is a primitive d-th root of the unity. We get a complete description when d is prime or a power of a prime. We also establish the relation of these systems with linear Ceva configurations.
Titolo: | Togliatti systems and Galois coverings | |
Autori: | ||
Data di pubblicazione: | 2018 | |
Data ahead of print: | 19-mag-2018 | |
Stato di pubblicazione: | Pubblicato | |
Rivista: | ||
Abstract: | We study the homogeneous artinian ideals of the polynomial ring K[x,y,z], generated by the homogenous polynomials of degree d which are invariant under an action of the cyclic group ℤ/dℤ, for any d≥3. We prove that they are all monomial Togliatti systems, and that they are minimal if the action is defined by a diagonal matrix having on the diagonal (1,e,e^a), where e is a primitive d-th root of the unity. We get a complete description when d is prime or a power of a prime. We also establish the relation of these systems with linear Ceva configurations. | |
Handle: | http://hdl.handle.net/11368/2929099 | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.jalgebra.2018.05.014 | |
URL: | https://doi.org/10.1016/j.jalgebra.2018.05.014 | |
Appare nelle tipologie: | 1.1 Articolo in Rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
1-s2.0-S0021869318303235-main.pdf | Articolo principale | Documento in Versione Editoriale | Copyright Editore | Administrator Richiedi una copia |
2929099_1-s2.0-S0021869318303235-main-PostPrint.pdf | Post Print VQR3 | Bozza finale post-referaggio (post-print) | Digital Rights Management non definito | Open Access Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.