A new N-P-Z (nutrient-phytoplankton-zooplankton) model is presented, named SPLAS (Sea PLAnkton Simulator). SPLAS is a size-structure model, based on two simple assumptions: 1) fundamental plankton physiological traits scale with organism size, and 2) grazing by zooplankton is structured by an optimal predator-prey length ratio. The model is based on empirical allometric relationships used to parameterize major plankton characteristics. 70 size-classes are defined for phytoplankton, in the range 1-200 μm, and there are 70 matching size-classes for zooplankton, in the range 2-1000 μm. Here phytoplankton are considered uptaking Nitrogen, and growing according to external N concentration and internal cellular quota. Zooplankton feed on phytoplankton through a size-based preference. No mixotrophy is considered. This work expands and improves the work done by Banas (2011) where a mechanistical model with size-resolution was presented, and it gave good results consistent with observations. Remaining simple in the formulation, SPLAS is able to mimic general pattern of plankton size distribution and diversity, at least in a 0-D sense, and to reproduce bottom-up and top-down interactions. Results from 10 years of integration show an emergent pattern of plankton size-structure consistent with theoretical and model prediction made, for example, by Ward et al. (2013), where the observed size structure was justified in terms of basic interactions between nutrient (bottom-up) and grazing (top-down) control. Then, SPLAS has been extended to a 1-D representation with explicit turbulent diffusion mechanism and a detritus pool collecting organic matter. The 1-D setup has been used to discuss the importance of light in this framework. With the inclusion of light (PAR) in phytoplankton growth rate the model represents also a Deep Biological Maximum (DBM) in phytoplankton biomass depth profile, and depth-dependence in phytoplankton growth rate triggers a non-homogeneous size-structure in depth that was not possible to obtain and describe in the 0-D setup nor in the 1-D setup without light (homogeneous plankton size-spectrum in depth). SPLAS reproduces also depth variations in the maximum biomass (DBM) with varying extinction constant for light and multiple maxima when phytoplankton self-shading is introduced. In the 1-D framework we also studied depth-varying diffusivities to analyze their impact on our modeled phytoplankton biomass profile. Lastly, we tried to use SPLAS 1-D to estimate biogeochemical fluxes, for instance Carbon export, obtaining about 68 mgC m-2 day-1 with our 1-D model. Our estimate of Carbon export is meant to be a starting point for future developments, rather than a real valid estimate, even if it is quite sensible being close to earlier estimates in literature (e.g. Ward & Follows, 2016).

Un nuovo modello viene presentato, si chiama SPLAS( Sea PLAnkton Simulator); è un modello matematica che risolve la struttura di taglia del plancton ed è basato su due semplici assunzioni: i tratti fisiologici fondamentali del plancton scalano con la taglia, e la predazione si basa su un rapporto di taglia ottimale tra preda e predatore. Il modello si basa su relazioni allometriche empiriche che vengono usate per parametrizzare le più importanti proprietà del plancton (affinità per nutrienti, tasso di crescita, tasso di ingestione, selettività, ecc.). 70 classi di taglia sono definite per il fitoplancton (da 1 a 200 micron) e per lo zooplancton (da 2 a 1000 micron). Nella rappresentazione il fitoplancton è considerato interamente autotrofo e lo zooplancton eterotrofo. Questo lavoro è ispirato ad un lavoro precedente di Neil Banas (2011) e ne porta avanti il valore scientifico con delle migliorie nella rappresentazione e con nuovi studi modellistici per ottenere valori di flussi biogeochimici. SPLAS, rimanendo semplice nella sua formulazione, è in grado di riprodurre pattern complessi del sistema rappresentato (catena planctonica) e in più rappresenta un promettente mezzo per studiare i flussi biogeochimici, in particolare l’export di carbonio. Nondimeno il modello, se esteso a un contesto unidimensionale (con aggiunta di diffusione verticale turbolenta e compartimento di materia organica) è in grado di dare stime ragionevoli proprio dell’export di carbonio. Queste stime oltre a essere comparabili con stime precedenti in letteratura, sono anche robuste rispetto ai parametri chiave del modello da cui dipende. Inoltre, con l’inclusione della luce nella crescita del fitoplancton, SPLAS riproduce anche il massimo di biomassa spesso presente in sistemi reali (sotto forma di massimo di clorofilla).

The role of plankton size in community structure, biodiversity and biogeochemical fluxes: a modeling approach / DE PASQUALE, Marco. - (2018 Sep 14).

The role of plankton size in community structure, biodiversity and biogeochemical fluxes: a modeling approach

DE PASQUALE, MARCO
2018-09-14

Abstract

A new N-P-Z (nutrient-phytoplankton-zooplankton) model is presented, named SPLAS (Sea PLAnkton Simulator). SPLAS is a size-structure model, based on two simple assumptions: 1) fundamental plankton physiological traits scale with organism size, and 2) grazing by zooplankton is structured by an optimal predator-prey length ratio. The model is based on empirical allometric relationships used to parameterize major plankton characteristics. 70 size-classes are defined for phytoplankton, in the range 1-200 μm, and there are 70 matching size-classes for zooplankton, in the range 2-1000 μm. Here phytoplankton are considered uptaking Nitrogen, and growing according to external N concentration and internal cellular quota. Zooplankton feed on phytoplankton through a size-based preference. No mixotrophy is considered. This work expands and improves the work done by Banas (2011) where a mechanistical model with size-resolution was presented, and it gave good results consistent with observations. Remaining simple in the formulation, SPLAS is able to mimic general pattern of plankton size distribution and diversity, at least in a 0-D sense, and to reproduce bottom-up and top-down interactions. Results from 10 years of integration show an emergent pattern of plankton size-structure consistent with theoretical and model prediction made, for example, by Ward et al. (2013), where the observed size structure was justified in terms of basic interactions between nutrient (bottom-up) and grazing (top-down) control. Then, SPLAS has been extended to a 1-D representation with explicit turbulent diffusion mechanism and a detritus pool collecting organic matter. The 1-D setup has been used to discuss the importance of light in this framework. With the inclusion of light (PAR) in phytoplankton growth rate the model represents also a Deep Biological Maximum (DBM) in phytoplankton biomass depth profile, and depth-dependence in phytoplankton growth rate triggers a non-homogeneous size-structure in depth that was not possible to obtain and describe in the 0-D setup nor in the 1-D setup without light (homogeneous plankton size-spectrum in depth). SPLAS reproduces also depth variations in the maximum biomass (DBM) with varying extinction constant for light and multiple maxima when phytoplankton self-shading is introduced. In the 1-D framework we also studied depth-varying diffusivities to analyze their impact on our modeled phytoplankton biomass profile. Lastly, we tried to use SPLAS 1-D to estimate biogeochemical fluxes, for instance Carbon export, obtaining about 68 mgC m-2 day-1 with our 1-D model. Our estimate of Carbon export is meant to be a starting point for future developments, rather than a real valid estimate, even if it is quite sensible being close to earlier estimates in literature (e.g. Ward & Follows, 2016).
14-set-2018
30
2016/2017
Settore GEO/12 - Oceanografia e Fisica dell'Atmosfera
Università degli Studi di Trieste
File in questo prodotto:
File Dimensione Formato  
M_DePasquale_TESI_FINAL.pdf

accesso aperto

Descrizione: tesi di dottorato
Dimensione 10.99 MB
Formato Adobe PDF
10.99 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2929831
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact