In situ forming ophthalmic gels need to be fine tuned considering all the biopharmaceutical challenges of the front of the eye in order to increase drug residence time at the application site resulting in its improved bioavailability and efficacy. The aim of this study was to develop in situ forming ophthalmic poloxamer P407/poloxamer P188/chitosan gel fine tuned in terms of polymer content, temperature of gelation, and viscosity. Minimizing the total polymer content while retaining the advantageous rheological properties has been achieved by means of D-optimal statistical design. The optimal in situ forming gel was selected based on minimal polymer content (P407, P188, and chitosan concentration of 14.2%, 1.7%, and 0.25% w/w, respectively), favorable rheological characteristics, and in vitro resistance to tear dilution. The optimal in situ forming gel was proved to be robust against entrapment of active pharmaceutical ingredients making it a suitable platform for ophthalmic delivery of active pharmaceutical ingredients with diverse physicochemical properties.
D-Optimal Design in the Development of Rheologically Improved In Situ Forming Ophthalmic Gel
Mario Grassi;
2018-01-01
Abstract
In situ forming ophthalmic gels need to be fine tuned considering all the biopharmaceutical challenges of the front of the eye in order to increase drug residence time at the application site resulting in its improved bioavailability and efficacy. The aim of this study was to develop in situ forming ophthalmic poloxamer P407/poloxamer P188/chitosan gel fine tuned in terms of polymer content, temperature of gelation, and viscosity. Minimizing the total polymer content while retaining the advantageous rheological properties has been achieved by means of D-optimal statistical design. The optimal in situ forming gel was selected based on minimal polymer content (P407, P188, and chitosan concentration of 14.2%, 1.7%, and 0.25% w/w, respectively), favorable rheological characteristics, and in vitro resistance to tear dilution. The optimal in situ forming gel was proved to be robust against entrapment of active pharmaceutical ingredients making it a suitable platform for ophthalmic delivery of active pharmaceutical ingredients with diverse physicochemical properties.File | Dimensione | Formato | |
---|---|---|---|
JPS 2018 107.pdf
Accesso chiuso
Descrizione: Testo dell'articolo
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
2.15 MB
Formato
Adobe PDF
|
2.15 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2929977_JPS 2018 107-PostPrint.pdf
accesso aperto
Descrizione: Post Print VQR3
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Digital Rights Management non definito
Dimensione
2.6 MB
Formato
Adobe PDF
|
2.6 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.