Complex coacervation of two oppositely charged polysaccharides, namely a lactose-modified chitosan (CTL) and hyaluronan (HA), was investigated in this study. Coacervates of the two polysaccharides were prepared by drop-by-drop injection of HA into CTL. Transmittance and dynamic light scattering (DLS) measurements in combination with TEM analyses demonstrated the formation of spheroidal colloids in the nano-/microsize range showing good homogeneity. Strikingly, the presence of 150 mM supporting NaCl did not hamper the colloid formation. Stability studies on selected formulations demonstrated that HA/CTL coacervates were stable up to 3 weeks at 37 °C and behaved as pH-responsive colloids since transition from entangled to disentangled chains was attained for a proper pH range. The possibility of freeze-drying the coacervates for storage purposes and the ability of encapsulating selected payloads were investigated as well, for two values of the fraction of the lactitol side-chain substitution (FL). Finally, biological tests using human neutrophils were undertaken at acidic pH value (pH = 6.0): under such experimental conditions, akin to those frequently occurring in the inflammatory microenvironment, coacervates scavenged reactive oxygen species (ROS) generated by these cells in basal conditions. Given the well documented bioactivity of CTL with respect to chitosan toward cartilage regeneration, these findings point to a possible application of HA/CTL-based colloids as scavenging and bioactive carriers for the delivery of therapeutic molecules at confined inflamed sites such as knee joints.

Complex Coacervates between a Lactose-Modified Chitosan and Hyaluronic Acid as Radical-Scavenging Drug Carriers

Vecchies F;Sacco P;Decleva E;Menegazzi R;Porrelli D;Donati I;Turco G;Paoletti S;Marsich E
2018-01-01

Abstract

Complex coacervation of two oppositely charged polysaccharides, namely a lactose-modified chitosan (CTL) and hyaluronan (HA), was investigated in this study. Coacervates of the two polysaccharides were prepared by drop-by-drop injection of HA into CTL. Transmittance and dynamic light scattering (DLS) measurements in combination with TEM analyses demonstrated the formation of spheroidal colloids in the nano-/microsize range showing good homogeneity. Strikingly, the presence of 150 mM supporting NaCl did not hamper the colloid formation. Stability studies on selected formulations demonstrated that HA/CTL coacervates were stable up to 3 weeks at 37 °C and behaved as pH-responsive colloids since transition from entangled to disentangled chains was attained for a proper pH range. The possibility of freeze-drying the coacervates for storage purposes and the ability of encapsulating selected payloads were investigated as well, for two values of the fraction of the lactitol side-chain substitution (FL). Finally, biological tests using human neutrophils were undertaken at acidic pH value (pH = 6.0): under such experimental conditions, akin to those frequently occurring in the inflammatory microenvironment, coacervates scavenged reactive oxygen species (ROS) generated by these cells in basal conditions. Given the well documented bioactivity of CTL with respect to chitosan toward cartilage regeneration, these findings point to a possible application of HA/CTL-based colloids as scavenging and bioactive carriers for the delivery of therapeutic molecules at confined inflamed sites such as knee joints.
File in questo prodotto:
File Dimensione Formato  
Vecchies et al.pdf

Accesso chiuso

Descrizione: Manoscritto
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 1.99 MB
Formato Adobe PDF
1.99 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2930940_Vecchies et al-PostPrint.pdf

accesso aperto

Descrizione: Post Print VQR3
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 2.17 MB
Formato Adobe PDF
2.17 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2930940
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 35
social impact