Grammatical evolution (GE) is one of the most widespread techniques in evolutionary computation. Genotypes in GE are bit strings while phenotypes are strings, of a language defined by a user-provided context-free grammar. In this paper, we propose a novel procedure for mapping genotypes to phenotypes that we call weighted hierarchical GE (WHGE). WHGE imposes a form of hierarchy on the genotype and encodes grammar symbols with a varying number of bits based on the relative expressive power of those symbols. WHGE does not impose any constraint on the overall GE framework, in particular, WHGE may handle recursive grammars, uses the classical genetic operators, and does not need to define any bound in advance on the size of phenotypes. We assessed experimentally our proposal in depth on a set of challenging and carefully selected benchmarks, comparing the results of the standard GE framework as well as two of the most significant enhancements proposed in the literature: 1) position-independent GE and 2) structured GE. Our results show that WHGE delivers very good results in terms of fitness as well as in terms of the properties of the genotype-phenotype mapping procedure.

Weighted Hierarchical Grammatical Evolution

Bartoli, Alberto;Medvet, Eric
2018-01-01

Abstract

Grammatical evolution (GE) is one of the most widespread techniques in evolutionary computation. Genotypes in GE are bit strings while phenotypes are strings, of a language defined by a user-provided context-free grammar. In this paper, we propose a novel procedure for mapping genotypes to phenotypes that we call weighted hierarchical GE (WHGE). WHGE imposes a form of hierarchy on the genotype and encodes grammar symbols with a varying number of bits based on the relative expressive power of those symbols. WHGE does not impose any constraint on the overall GE framework, in particular, WHGE may handle recursive grammars, uses the classical genetic operators, and does not need to define any bound in advance on the size of phenotypes. We assessed experimentally our proposal in depth on a set of challenging and carefully selected benchmarks, comparing the results of the standard GE framework as well as two of the most significant enhancements proposed in the literature: 1) position-independent GE and 2) structured GE. Our results show that WHGE delivers very good results in terms of fitness as well as in terms of the properties of the genotype-phenotype mapping procedure.
2018
8-nov-2018
Epub ahead of print
https://ieeexplore.ieee.org/document/8525307
File in questo prodotto:
File Dimensione Formato  
2018_TCyb_WHGE (6).pdf

accesso aperto

Descrizione: © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Link to publisher's version:https://ieeexplore.ieee.org/document/8525307
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Copyright Editore
Dimensione 707.12 kB
Formato Adobe PDF
707.12 kB Adobe PDF Visualizza/Apri
whge-editorial-08525307.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2931061
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact