The Arabian Plate shows a strong asymmetry between its Shield and Platform, in terms of topography, seismic velocity and density structure of the upper mantle. This asymmetry also results in significant rheological differences between these blocks, as revealed by the effective elastic thickness (EET) estimates, obtained using a spectral gravity method. However, these estimates may be biased due to various factors. Therefore, other approaches based on a direct rheological modeling of the lithospheric structure should be employed to verify these results. In this study, we use a recent model of the lithosphere, based on an integrative interpretation of the gravity field and seismic tomography, to correct an initial thermal model obtained from the inversion of seismic velocity, assuming a uniform composition. The results are used together with the most recent crustal model of the Arabian Plate to construct two alternative models of strength and EET of the lithosphere. The first model (Model I) assumes a constant value of 10-15 s-1 for the strain rates. In the second model (Model II), we used the strain rates obtained from a global mantle flow model. Model I confirms the asymmetry in the rigidity of the Shield and Platform. In contrast, Model II shows that the influence of the variable strain rates causes a significant increase in the strength and EET of the central and eastern part of the Shield and in contrast to previous studies, reveals that most of the Arabian Plate is a long-term stable tectonic feature, predominantly characterized by large EET values (≥70km).

Strength and elastic thickness variations in the Arabian Plate: A combination of temperature, composition and strain rates of the lithosphere

Tesauro, Magdala
;
2018-01-01

Abstract

The Arabian Plate shows a strong asymmetry between its Shield and Platform, in terms of topography, seismic velocity and density structure of the upper mantle. This asymmetry also results in significant rheological differences between these blocks, as revealed by the effective elastic thickness (EET) estimates, obtained using a spectral gravity method. However, these estimates may be biased due to various factors. Therefore, other approaches based on a direct rheological modeling of the lithospheric structure should be employed to verify these results. In this study, we use a recent model of the lithosphere, based on an integrative interpretation of the gravity field and seismic tomography, to correct an initial thermal model obtained from the inversion of seismic velocity, assuming a uniform composition. The results are used together with the most recent crustal model of the Arabian Plate to construct two alternative models of strength and EET of the lithosphere. The first model (Model I) assumes a constant value of 10-15 s-1 for the strain rates. In the second model (Model II), we used the strain rates obtained from a global mantle flow model. Model I confirms the asymmetry in the rigidity of the Shield and Platform. In contrast, Model II shows that the influence of the variable strain rates causes a significant increase in the strength and EET of the central and eastern part of the Shield and in contrast to previous studies, reveals that most of the Arabian Plate is a long-term stable tectonic feature, predominantly characterized by large EET values (≥70km).
File in questo prodotto:
File Dimensione Formato  
Tesauro et al. Tectonophysics 2018.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 6.42 MB
Formato Adobe PDF
6.42 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2931711
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 13
social impact