The multiple-variance method is a cross-correlation method that exploits input signals with different powers for the identification of a nonlinear system by means of the Volterra series. It overcomes the problem of the locality of the solution of traditional nonlinear identification methods, based on mean square error minimization or cross-correlation, that well approximate the system only for inputs that have approximately the same power of the identification signal. The multiple-variance method permits to improve the performance of models of systems that have inputs with high dynamic, like audio amplifiers. This method is used, for the first time, to identify three different tube amplifiers. The method is applied to a novel reduced Volterra model that allows to overcome the problem of the very large number of coefficients required by the Volterra series by choosing only a proper subset of elements from each kernel. Eventually, the multiple-variance methodology is applied to different real audio tube devices demonstrating the effectiveness of the proposed approach in terms of system identification and computational complexity.

Identification of Volterra Models of Tube Audio Devices using Multiple-Variance Method

Carini, Alberto
2018-01-01

Abstract

The multiple-variance method is a cross-correlation method that exploits input signals with different powers for the identification of a nonlinear system by means of the Volterra series. It overcomes the problem of the locality of the solution of traditional nonlinear identification methods, based on mean square error minimization or cross-correlation, that well approximate the system only for inputs that have approximately the same power of the identification signal. The multiple-variance method permits to improve the performance of models of systems that have inputs with high dynamic, like audio amplifiers. This method is used, for the first time, to identify three different tube amplifiers. The method is applied to a novel reduced Volterra model that allows to overcome the problem of the very large number of coefficients required by the Volterra series by choosing only a proper subset of elements from each kernel. Eventually, the multiple-variance methodology is applied to different real audio tube devices demonstrating the effectiveness of the proposed approach in terms of system identification and computational complexity.
2018
Pubblicato
AES
http://www.aes.org/e-lib/browse.cfm?elib=19864
File in questo prodotto:
File Dimensione Formato  
2018 JAES Orcioni Terenzi Cecchi Piazza Carini.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 604.25 kB
Formato Adobe PDF
604.25 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2933801_2018 JAES Orcioni Terenzi Cecchi Piazza Carini-PostPrint.pdf

accesso aperto

Descrizione: Post Print VQR3
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2933801
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 18
social impact