The chrome ores of the abandoned Eretria mine of the East Othris ophiolite occur within a pervasively serpentinized and sheared harzburgite body. They consist of massive chromitites with mylonitic fabric in imbricate shaped pods. Modal analyses of these ores average at about 90-–95% chromian spinel (Cr-spinel) and 5–10% secondary silicates. Chromian spinel compositions vary in Cr# [Cr/(Cr + Al) × 100] and Mg# [Mg/(Mg + Fe2+) × 100] from 44 to 62 and from 59 to 81, respectively. Trace element (Ti, Ni, V, Mn, Zn, Sc, Co and Ga) contents in Cr-spinel do not show significant variations from grain cores to grain boundaries. However, Cr-spinel compositions show depletions in Ti, Zn and Sc when compared to the composition of accessory Cr-spinel from typical mid-ocean ridge basalts (MORB). Mineral inclusions hosted in Cr-spinel comprise a range of (hydrous and anhydrous) silicate and base metal (BM) minerals occasionally intergrown with phosphate minerals and rare intermetallic compounds. A number of these inclusions have Cr-spinel rims with higher Cr# (63-–68) than those of the enclosing Cr-spinel grains. The absence of dunite sheaths around chromitites is interpreted as an artifact of dunite structural obliteration during prolonged ductile shearing within harzburgite. The microtextural characteristics of a number of inclusions in Cr-spinel imply that they were initially fully molten. Furthermore, primary hydrosilicate (amphibole, phlogopite) inclusions in Cr-spinel indicate that chromitites crystallized from a water-bearing melt. Chromian spinel rims around silicate inclusions probably represent early crystals generated from a primitive magma produced by melting of a depleted mantle source. Geochemical calculations demonstrate that the parental melts of chromitites had intermediate affinity between MORB and arc-related magmas. Our preferred hypothesis for the genesis of the Eretria chromitites is that they were formed from a melt originated within the hydrated mantle wedge beneath a nascent forearc basin during subduction initiation.
Refractory chromitites recovered from the Eretria mine, East Othris massif (Greece): Implications for metallogeny and deformation of chromitites within the lithospheric mantle portion of a forearc-type ophiolite
Lenaz D.Membro del Collaboration Group
;Velicogna M.Membro del Collaboration Group
;
2019-01-01
Abstract
The chrome ores of the abandoned Eretria mine of the East Othris ophiolite occur within a pervasively serpentinized and sheared harzburgite body. They consist of massive chromitites with mylonitic fabric in imbricate shaped pods. Modal analyses of these ores average at about 90-–95% chromian spinel (Cr-spinel) and 5–10% secondary silicates. Chromian spinel compositions vary in Cr# [Cr/(Cr + Al) × 100] and Mg# [Mg/(Mg + Fe2+) × 100] from 44 to 62 and from 59 to 81, respectively. Trace element (Ti, Ni, V, Mn, Zn, Sc, Co and Ga) contents in Cr-spinel do not show significant variations from grain cores to grain boundaries. However, Cr-spinel compositions show depletions in Ti, Zn and Sc when compared to the composition of accessory Cr-spinel from typical mid-ocean ridge basalts (MORB). Mineral inclusions hosted in Cr-spinel comprise a range of (hydrous and anhydrous) silicate and base metal (BM) minerals occasionally intergrown with phosphate minerals and rare intermetallic compounds. A number of these inclusions have Cr-spinel rims with higher Cr# (63-–68) than those of the enclosing Cr-spinel grains. The absence of dunite sheaths around chromitites is interpreted as an artifact of dunite structural obliteration during prolonged ductile shearing within harzburgite. The microtextural characteristics of a number of inclusions in Cr-spinel imply that they were initially fully molten. Furthermore, primary hydrosilicate (amphibole, phlogopite) inclusions in Cr-spinel indicate that chromitites crystallized from a water-bearing melt. Chromian spinel rims around silicate inclusions probably represent early crystals generated from a primitive magma produced by melting of a depleted mantle source. Geochemical calculations demonstrate that the parental melts of chromitites had intermediate affinity between MORB and arc-related magmas. Our preferred hypothesis for the genesis of the Eretria chromitites is that they were formed from a melt originated within the hydrated mantle wedge beneath a nascent forearc basin during subduction initiation.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0009281918301880-main(2)_compressed.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
1.4 MB
Formato
Adobe PDF
|
1.4 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.