In this paper, we study the formation and chemical evolution of the Milky Way disc with particular focus on the abundance patterns ([α/Fe] versus [Fe/H]) at different Galactocentric distances, the present-time abundance gradients along the disc, and the time evolution of abundance gradients. We consider the chemical evolution models for the Galactic disc developed by Grisoni et al. for the solar neighbourhood, both the two-infall and the one-infall ones, and we extend our analysis to the other Galactocentric distances. In particular, we examine the processes that mainly influence the formation of the abundance gradients: the inside-out scenario, a variable star formation efficiency, and radial gas flows. We compare our model results with recent abundance patterns obtained along the Galactic disc from the APOGEE survey and with abundance gradients observed from Cepheids, open clusters, H II regions, and PNe. We conclude that the inside-out scenario is a key ingredient but cannot be the only one to explain abundance patterns at different Galactocentric distances and abundance gradients. Further ingredients, such as radial gas flows and variable star formation efficiency, are needed to reproduce the observed features in the thin disc. The evolution of abundance gradients with time is also shown, although firm conclusions cannot still be drawn.

Abundance gradients along the Galactic disc from chemical evolution models

Grisoni, V.
;
Spitoni, E.;Matteucci, F.
2018-01-01

Abstract

In this paper, we study the formation and chemical evolution of the Milky Way disc with particular focus on the abundance patterns ([α/Fe] versus [Fe/H]) at different Galactocentric distances, the present-time abundance gradients along the disc, and the time evolution of abundance gradients. We consider the chemical evolution models for the Galactic disc developed by Grisoni et al. for the solar neighbourhood, both the two-infall and the one-infall ones, and we extend our analysis to the other Galactocentric distances. In particular, we examine the processes that mainly influence the formation of the abundance gradients: the inside-out scenario, a variable star formation efficiency, and radial gas flows. We compare our model results with recent abundance patterns obtained along the Galactic disc from the APOGEE survey and with abundance gradients observed from Cepheids, open clusters, H II regions, and PNe. We conclude that the inside-out scenario is a key ingredient but cannot be the only one to explain abundance patterns at different Galactocentric distances and abundance gradients. Further ingredients, such as radial gas flows and variable star formation efficiency, are needed to reproduce the observed features in the thin disc. The evolution of abundance gradients with time is also shown, although firm conclusions cannot still be drawn.
File in questo prodotto:
File Dimensione Formato  
grisoni2018.pdf

accesso aperto

Descrizione: This article has been accepted for publication in Monthly notices of the Royal Astronomical Society ©2018 The Author(s)] Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 3.76 MB
Formato Adobe PDF
3.76 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2935971
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 66
  • ???jsp.display-item.citation.isi??? 61
social impact