The INBIS (Interfan Bear Island and Storfjorden) channel system is a rare example of a deep-sea channel on a glaciated margin. The system is located between two trough mouth fans (TMFs) on the continental slope of the NW Barents Sea: the Bear Island and the Storfjorden–Kveithola TMFs. New bathymetric data in the upper part of this channel system show a series of gullies that incise the shelf break and minor tributary channels on the upper part of the continental slope. These gullies and channels appear far more developed than those on the rest of the NW Barents Sea margin, increasing in size downslope and eventually merging into the INBIS channel. Morphological evidence suggests that the Northern part of the INBIS channel system preserved its original morphology over the last glacial maximum (LGM), whereas the Southern part experienced the emplacement of mass transport glacigenic debris that obliterated the original morphology. Radiometric analyses were applied on two sediment cores to estimate the recent (~ 110 years) sedimentation rates. Furthermore, analysis of grain size characteristics and sediment composition of two cores shows evidence of turbidity currents. We associate these turbidity currents with density-driven plumes, linked to the release of meltwater at the ice-sheet grounding line, cascading down the slope. This type of density current would contribute to the erosion and/ or preservation of the gullies’ morphologies during the present interglacial. We infer that Bear Island and the shallow morphology around it prevented the flow of ice streams to the shelf edge in this area, working as a pin (fastener) for the surrounding ice and allowing for the development of the INBIS channel system on the inter-ice stream part of the slope. The INBIS channel system was protected from the burial by high rates of ice-stream derived sedimentation and only partially affected by the local emplacement of glacial debris, which instead dominated on the neighbouring TMF systems.

Geomorphology and development of a high-latitude channel system: the INBIS channel case (NW Barents Sea, Arctic)

Rui, L.;ACCETTELLA, DANIELA;DELBONO, IVANA;
2019-01-01

Abstract

The INBIS (Interfan Bear Island and Storfjorden) channel system is a rare example of a deep-sea channel on a glaciated margin. The system is located between two trough mouth fans (TMFs) on the continental slope of the NW Barents Sea: the Bear Island and the Storfjorden–Kveithola TMFs. New bathymetric data in the upper part of this channel system show a series of gullies that incise the shelf break and minor tributary channels on the upper part of the continental slope. These gullies and channels appear far more developed than those on the rest of the NW Barents Sea margin, increasing in size downslope and eventually merging into the INBIS channel. Morphological evidence suggests that the Northern part of the INBIS channel system preserved its original morphology over the last glacial maximum (LGM), whereas the Southern part experienced the emplacement of mass transport glacigenic debris that obliterated the original morphology. Radiometric analyses were applied on two sediment cores to estimate the recent (~ 110 years) sedimentation rates. Furthermore, analysis of grain size characteristics and sediment composition of two cores shows evidence of turbidity currents. We associate these turbidity currents with density-driven plumes, linked to the release of meltwater at the ice-sheet grounding line, cascading down the slope. This type of density current would contribute to the erosion and/ or preservation of the gullies’ morphologies during the present interglacial. We infer that Bear Island and the shallow morphology around it prevented the flow of ice streams to the shelf edge in this area, working as a pin (fastener) for the surrounding ice and allowing for the development of the INBIS channel system on the inter-ice stream part of the slope. The INBIS channel system was protected from the burial by high rates of ice-stream derived sedimentation and only partially affected by the local emplacement of glacial debris, which instead dominated on the neighbouring TMF systems.
2019
25-feb-2019
Epub ahead of print
https://link.springer.com/article/10.1007%2Fs41063-019-00065-9
File in questo prodotto:
File Dimensione Formato  
10.1007@s41063-019-00065-9.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 3.89 MB
Formato Adobe PDF
3.89 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2936821
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact