Surface-confined mixed metal oxides can have different chemical properties compared to their host metal oxide support. For this reason, mixed transition metal oxides can offer tunable redox properties. Herein, we use density functional theory to predict the stability of the (0001) surface termination for mixed metal oxides consisting of Fe2O3, Cr2O3 and V2O3. We show that the pure oxide surface stability can predict the surface segregation preference of the surface-confined mixed metal oxides. We focus on substitution of Fe in the V2O3(0001) surface, for which we observe that Fe substitution increases the reducibility of the resulting mixed metal oxide surface. Our results suggest Fe is only stable on the surface under very high temperature and/or low-pressure conditions. Using thermodynamic relationships, we predict the transition points for these surface-confined mixed metal oxides at which exchange between surface/subsurface and subsurface/surface metal atoms occur due to changes in the oxygen chemical potential.

A first-principles study of stability of surface confined mixed metal oxides with corundum structure (Fe2O3, Cr2O3, V2O3)

Bignardi, Luca
Membro del Collaboration Group
;
2018-01-01

Abstract

Surface-confined mixed metal oxides can have different chemical properties compared to their host metal oxide support. For this reason, mixed transition metal oxides can offer tunable redox properties. Herein, we use density functional theory to predict the stability of the (0001) surface termination for mixed metal oxides consisting of Fe2O3, Cr2O3 and V2O3. We show that the pure oxide surface stability can predict the surface segregation preference of the surface-confined mixed metal oxides. We focus on substitution of Fe in the V2O3(0001) surface, for which we observe that Fe substitution increases the reducibility of the resulting mixed metal oxide surface. Our results suggest Fe is only stable on the surface under very high temperature and/or low-pressure conditions. Using thermodynamic relationships, we predict the transition points for these surface-confined mixed metal oxides at which exchange between surface/subsurface and subsurface/surface metal atoms occur due to changes in the oxygen chemical potential.
File in questo prodotto:
File Dimensione Formato  
Phys._Chem._Chem._Phys._2018_Jonayat.pdf

Accesso chiuso

Descrizione: articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 2.36 MB
Formato Adobe PDF
2.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2937034
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
social impact