The rising demand for advanced polyesters, displaying new functional properties, has boosted the development of new biocatalysed routes for polymer synthesis, where enzymes concretely respond to the challenge of combining benign conditions with high selectivity and efficient catalysis. Enzymes are attractive sustainable alternatives to toxic catalysts used in polycondensation, such as metal catalysts and tin in particular. Moreover, they enable the synthesis of functional polyesters that are otherwise not easily accessible by using traditional chemical routes. The aim of the present thesis is to integrate experimental and bioinformatics approaches in order to study new biocatalysts to be used in polycondensations. A valid alternative to metal catalysts is represented by enzymes. Biocatalyst recyclability and avoidance of product contamination are usually obtained via enzyme immobilization on solid carriers. Nowadays, non-renewable petrochemical-based supports are used for this purpose, namely methacrylic and styrenic resins. In this thesis (Chapter 3), rice husk - a waste product of rice milling available worldwide at a negligible price - has been explored as an innovative and fully renewable lignocellulosic carrier endowed with morphological complexity and chemical versatility that makes it prone to multiple and benign chemo-enzymatic modifications. A comparison of chemical and enzymatic methods for the functionalization of rice husk has been carried out, enabling the development of a renewable immobilization carrier suitable for responding to the looming challenge of green chemistry. The enzymatic method relies on laccase oxidation using laccase from Trametes spec. and TEMPO-radical mediator, followed by the insertion of a diamine spacer. As compared to the classical cellulose oxidation performed via sodium periodate, the enzymatic method offers the advantage of preserving the morphology of rice husk, as demonstrated by SEM microscopy. Laccase oxidation also assures benign operative conditions. Candida antarctica Lipase B, and two commercially available formulations of asparaginase, were immobilized and tested. In the first case, the lipase was successfully applied in the polycondensation of the biobased monomer dimethyl itaconate whereas the immobilized asparaginases were applied in the hydrolysis of asparagine, a precursor of the toxic acrylamide in food. In addition, lignin removal via alkaline hydrogen peroxide bleaching has been tested as a method for increasing the specific activity of the immobilized formulation. While lipases being the most common alternative for polycondensation reactions, our research group focused on the study of a novel class of serine hydrolases to be used in these kind of reactions, namely the cutinases. The cutinase class proved to catalyse the efficient polycondensation of biobased monomers working in mild conditions in terms of pressure and temperature. A thorough bioinformatics study was carried out based on GRID-based BioGPS descriptors (Chapter 4). BioGPS allowed to project a selection of cutinases on a Unsupervised Pattern Cognition Analysis (UPCA) model previously published by this research group, confirming that the pre-organized physicochemical environment in the active site of Cutinase 1 from Thermobifida cellulosilytica is very similar to the one of Candida antarctica Lipase B, while offering increased capabilities in terms of the size of the substrate accepted, thanks to a superficial and wide active site. The said software was used also to generate the “catalophor” of different serine hydrolase subfamilies, enabling to extract the structural features that distinguish the various sub-families of serine hydrolases. Exploiting the “catalophor” tool and molecular dynamics studies it was possible to shed light on the particular behaviour that makes cutinases an advantageous biocatalyst to be used in polycondensation reactions.
La crescente domanda di poliesteri funzionalizzabili ha accresciuto l’interesse nello sviluppo di nuove strade per la sintesi biocatalizzata di polimeri, dove gli enzimi sono in grado di rispondere alla sfida di combinare condizioni di reazione sostenibili dal punto di vista ambientale con l’alta selettività ed efficienza della catalisi. Gli enzimi sono un’attrattiva sostenibile ai catalizzatori tossici usati nelle policondensazione, come quelli metallici, stagno in particolare. L’obiettivo di questa tesi è quello di integrare approcci sperimentali e bioinformatici per lo studio di nuovi biocatalizzatori per le policondensazioni. Una valida alternativa è infatti rappresentata dagli enzimi, i quali consentono riciclabilità, assenza di contaminazione del prodotto grazie all’immobilizzazione della proteina. Attualmente, i supporti per l’immobilizzazione sono di natura non rinnovabile (metacrilici e stirenici). In questa tesi (Capitolo 3) si è esplorata la possibilità di utilizzare la lolla di riso – un economico materiale di scarto lignocellulosico - a questo proposito. Verrà proposto un confronto tra metodi chemoenzimatici per la funzionalizzazione della lolla, con l’obiettivo di ottenere un supporto di immobilizzazione rinnovabile capace di rispondere alle sfide della green chemistry. Il metodo enzimatico utilizza un sistema laccasi-mediatore con l’inserimento di un linker diamminico. Questo approccio consente di evitare l’utilizzo del periodato di sodio, che è responsabile di importanti alterazioni nella struttura morfologica della lolla, come dimostrato da microscopia SEM. Candida antarctica Lipasi B e due asparaginasi sono state immobilizzate e testate. La lipasi immobilizzata è stata utilizzata per sintetizzare un poliestere con l’acido itaconico. Mentre le lipasi sono la più comune scelta per le reazioni di policondensazione, il nostro gruppo si è concentrato sullo studio di nuove serin idrolasi da utilizzare in questo campo, nello specifico, le cutinasi. Questa classe di enzimi è già stata utilizzata per catalizzare la sintesi efficiente di poliesteri con monomeri biobased, lavorando in condizioni sostenibili dal punto di vista ambientale. Uno studio bioinformatico approfondito delle cutinasi verrà proposto nel Capitolo 4 utilizzando i descrittori GRID-based di BioGPS. Il software ha consentito di proiettare una selezione di cutinasi su un modello UPCA (Unsupervised Pattern Cognition Analysis) precedentemente studiato da questo gruppo di ricerca, confermando che l’ambiente chimico-fisico pre-organizzato di Cutinasi 1 da Thermobifida cellulosilytica è molto simile a quello di Candida antarctica Lipasi B ed è in grado di offrire ulteriori vantaggi in termini di tipologie di substrato accettati grazie al suo sito attivo molto superficiale. BioGPS è stato usato anche per generare il “cataloforo” di differenti sottoclassi di serin idrolasi, permettendo di estrarre le caratteristiche minime proprie di ciascuna di esse. Utilizzando il “cataloforo” e studi di dinamica molecolare è stato possibile chiarire le ragioni alla base delle caratteristiche vantaggiose delle cutinasi nella sintesi di poliesteri.
Integration of bioinformatics analysis and experimental biocatalysis for a comprehensive approach to the synthesis of renewable polyesters / Cespugli, Marco. - (2019 Mar 01).
Integration of bioinformatics analysis and experimental biocatalysis for a comprehensive approach to the synthesis of renewable polyesters
CESPUGLI, MARCO
2019-03-01
Abstract
The rising demand for advanced polyesters, displaying new functional properties, has boosted the development of new biocatalysed routes for polymer synthesis, where enzymes concretely respond to the challenge of combining benign conditions with high selectivity and efficient catalysis. Enzymes are attractive sustainable alternatives to toxic catalysts used in polycondensation, such as metal catalysts and tin in particular. Moreover, they enable the synthesis of functional polyesters that are otherwise not easily accessible by using traditional chemical routes. The aim of the present thesis is to integrate experimental and bioinformatics approaches in order to study new biocatalysts to be used in polycondensations. A valid alternative to metal catalysts is represented by enzymes. Biocatalyst recyclability and avoidance of product contamination are usually obtained via enzyme immobilization on solid carriers. Nowadays, non-renewable petrochemical-based supports are used for this purpose, namely methacrylic and styrenic resins. In this thesis (Chapter 3), rice husk - a waste product of rice milling available worldwide at a negligible price - has been explored as an innovative and fully renewable lignocellulosic carrier endowed with morphological complexity and chemical versatility that makes it prone to multiple and benign chemo-enzymatic modifications. A comparison of chemical and enzymatic methods for the functionalization of rice husk has been carried out, enabling the development of a renewable immobilization carrier suitable for responding to the looming challenge of green chemistry. The enzymatic method relies on laccase oxidation using laccase from Trametes spec. and TEMPO-radical mediator, followed by the insertion of a diamine spacer. As compared to the classical cellulose oxidation performed via sodium periodate, the enzymatic method offers the advantage of preserving the morphology of rice husk, as demonstrated by SEM microscopy. Laccase oxidation also assures benign operative conditions. Candida antarctica Lipase B, and two commercially available formulations of asparaginase, were immobilized and tested. In the first case, the lipase was successfully applied in the polycondensation of the biobased monomer dimethyl itaconate whereas the immobilized asparaginases were applied in the hydrolysis of asparagine, a precursor of the toxic acrylamide in food. In addition, lignin removal via alkaline hydrogen peroxide bleaching has been tested as a method for increasing the specific activity of the immobilized formulation. While lipases being the most common alternative for polycondensation reactions, our research group focused on the study of a novel class of serine hydrolases to be used in these kind of reactions, namely the cutinases. The cutinase class proved to catalyse the efficient polycondensation of biobased monomers working in mild conditions in terms of pressure and temperature. A thorough bioinformatics study was carried out based on GRID-based BioGPS descriptors (Chapter 4). BioGPS allowed to project a selection of cutinases on a Unsupervised Pattern Cognition Analysis (UPCA) model previously published by this research group, confirming that the pre-organized physicochemical environment in the active site of Cutinase 1 from Thermobifida cellulosilytica is very similar to the one of Candida antarctica Lipase B, while offering increased capabilities in terms of the size of the substrate accepted, thanks to a superficial and wide active site. The said software was used also to generate the “catalophor” of different serine hydrolase subfamilies, enabling to extract the structural features that distinguish the various sub-families of serine hydrolases. Exploiting the “catalophor” tool and molecular dynamics studies it was possible to shed light on the particular behaviour that makes cutinases an advantageous biocatalyst to be used in polycondensation reactions.File | Dimensione | Formato | |
---|---|---|---|
tesi_final_MC.pdf
Open Access dal 29/02/2020
Descrizione: tesi di dottorato
Dimensione
19.28 MB
Formato
Adobe PDF
|
19.28 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.