Understanding the role of the electron dynamics in the photochemistry of bio-chemically relevant molecules is key to getting access to the fundamental physical processes leading to damage, mutation and, more generally, to the alteration of the final biological functions. Sudden ionization of a large molecule has been proven to activate a sub-femtosecond charge flow throughout the molecular backbone, purely guided by electronic coherences, which could ultimately affect the photochemical response of the molecule at later times. We can follow this ultrafast charge flow in real time by exploiting the extreme time resolution provided by attosecond light sources. In this work recent advances in attosecond molecular physics are presented with particular focus on the investigation of bio-relevant molecules.

Attosecond spectroscopy of bio-chemically relevant molecules

Decleva, P.;
2018-01-01

Abstract

Understanding the role of the electron dynamics in the photochemistry of bio-chemically relevant molecules is key to getting access to the fundamental physical processes leading to damage, mutation and, more generally, to the alteration of the final biological functions. Sudden ionization of a large molecule has been proven to activate a sub-femtosecond charge flow throughout the molecular backbone, purely guided by electronic coherences, which could ultimately affect the photochemical response of the molecule at later times. We can follow this ultrafast charge flow in real time by exploiting the extreme time resolution provided by attosecond light sources. In this work recent advances in attosecond molecular physics are presented with particular focus on the investigation of bio-relevant molecules.
2018
Pubblicato
https://www.sif.it/riviste/sif/ncr/econtents/2018/041/08/article/0
https://pure.qub.ac.uk/portal/files/157449436/calegari_submitted_revised.pdf
File in questo prodotto:
File Dimensione Formato  
2194990.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 33.36 MB
Formato Adobe PDF
33.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2938882
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact