We provide a multiplicity result for critical points of a functional defined on the product of a compact manifold without boundary and a convex set, by assuming, for example, an avoiding rays condition at the boundary of that set. We then extend this result to an infinite-dimensional setting which well applies to the search of periodic solutions of pendulum-like equations.
Generalizing the Lusternik–Schnirelmann critical point theorem
Fonda, Alessandro
2019-01-01
Abstract
We provide a multiplicity result for critical points of a functional defined on the product of a compact manifold without boundary and a convex set, by assuming, for example, an avoiding rays condition at the boundary of that set. We then extend this result to an infinite-dimensional setting which well applies to the search of periodic solutions of pendulum-like equations.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2019_Fonda_BLMS.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
191.78 kB
Formato
Adobe PDF
|
191.78 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.