We provide a multiplicity result for critical points of a functional defined on the product of a compact manifold without boundary and a convex set, by assuming, for example, an avoiding rays condition at the boundary of that set. We then extend this result to an infinite-dimensional setting which well applies to the search of periodic solutions of pendulum-like equations.

Generalizing the Lusternik–Schnirelmann critical point theorem

Fonda, Alessandro
2019-01-01

Abstract

We provide a multiplicity result for critical points of a functional defined on the product of a compact manifold without boundary and a convex set, by assuming, for example, an avoiding rays condition at the boundary of that set. We then extend this result to an infinite-dimensional setting which well applies to the search of periodic solutions of pendulum-like equations.
File in questo prodotto:
File Dimensione Formato  
2019_Fonda_BLMS.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 191.78 kB
Formato Adobe PDF
191.78 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2939584
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact