We propose a generalization of the parallelogram identity in any dimension N ≥ 2, establishing the ratio of the quadratic mean of the diagonals to the quadratic mean of the faces of a parallelotope. The proof makes use of simple properties of the exterior product of vectors.
A generalization of the parallelogram law to higher dimensions
Fonda, Alessandro
2019-01-01
Abstract
We propose a generalization of the parallelogram identity in any dimension N ≥ 2, establishing the ratio of the quadratic mean of the diagonals to the quadratic mean of the faces of a parallelotope. The proof makes use of simple properties of the exterior product of vectors.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2019_Fonda_AMC.pdf
accesso aperto
Descrizione: This work is licensed under https://creativecommons.org/licenses/by/4.0/
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
236.74 kB
Formato
Adobe PDF
|
236.74 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.