We propose a generalization of the parallelogram identity in any dimension N ≥ 2, establishing the ratio of the quadratic mean of the diagonals to the quadratic mean of the faces of a parallelotope. The proof makes use of simple properties of the exterior product of vectors.
Titolo: | A generalization of the parallelogram law to higher dimensions |
Autori: | |
Data di pubblicazione: | 2019 |
Stato di pubblicazione: | Pubblicato |
Rivista: | |
Abstract: | We propose a generalization of the parallelogram identity in any dimension N ≥ 2, establishing the ratio of the quadratic mean of the diagonals to the quadratic mean of the faces of a parallelotope. The proof makes use of simple properties of the exterior product of vectors. |
Handle: | http://hdl.handle.net/11368/2939586 |
Digital Object Identifier (DOI): | http://dx.doi.org/10.26493/1855-3974.1704.34c |
URL: | https://amc-journal.eu/index.php/amc/article/view/1704/1305 |
Appare nelle tipologie: | 1.1 Articolo in Rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
2019_Fonda_AMC.pdf | This work is licensed under https://creativecommons.org/licenses/by/4.0/ | Documento in Versione Editoriale | ![]() | Open Access Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.