We present a higher-dimensional version of the Poincaré–Birkhoff theorem which applies to Poincaré time maps of Hamiltonian systems. The maps under consideration are neither required to be close to the identity nor to have a monotone twist. The annulus is replaced by the product of an N-dimensional torus and the interior of a (N − 1)-dimensional (not necessarily convex) embedded sphere; on the other hand, the classical boundary twist condition is replaced by an avoiding rays condition.

A Poincaré–Birkhoff theorem for Hamiltonian flows on nonconvex domains

Fonda, Alessandro;
2019-01-01

Abstract

We present a higher-dimensional version of the Poincaré–Birkhoff theorem which applies to Poincaré time maps of Hamiltonian systems. The maps under consideration are neither required to be close to the identity nor to have a monotone twist. The annulus is replaced by the product of an N-dimensional torus and the interior of a (N − 1)-dimensional (not necessarily convex) embedded sphere; on the other hand, the classical boundary twist condition is replaced by an avoiding rays condition.
File in questo prodotto:
File Dimensione Formato  
2019_Fonda-Urena_JMPA.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 536.84 kB
Formato Adobe PDF
536.84 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2939590
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact