Motivated by recent density-matrix renormalization group (DMRG) calculations [Yan, Huse, and White, Science 332, 1173 (2011)], which claimed that the ground state of the nearest-neighbor spin-1/2 Heisenberg antiferromagnet on the kagome lattice geometry is a fully gapped spin liquid with numerical signatures of Z(2) gauge structure, and a further theoretical work [Lu, Ran, and Lee, Phys. Rev. B 83, 224413 (2011)], which gave a classification of all Schwinger-fermion mean-field fully symmetric Z(2) spin liquids on the kagome lattice, we have thoroughly studied Gutzwiller-projected fermionic wave functions by using quantum variational Monte Carlo techniques, hence implementing exactly the constraint of one fermion per site. In particular, we investigated the energetics of all Z(2) candidates (gapped and gapless) that lie in the neighborhood of the energetically competitive U(1) gapless spin liquids. By using a state-of-the-art optimization method, we were able to conclusively show that the U(1) Dirac state is remarkably stable with respect to all Z(2) spin liquids in its neighborhood, and in particular for opening a gap toward the so-called Z(2)[0,pi]beta state, which was conjectured to describe the ground state obtained by the DMRG method. Finally, we also considered the addition of a small second nearest-neighbor exchange coupling of both antiferromagnetic and ferromagnetic type, and obtained similar results, namely, a U(1) Dirac spin-liquid ground state.
Projected wave function study of Z 2 spin liquids on the kagome lattice for the spin-12 quantum Heisenberg antiferromagnet
Becca F;
2011-01-01
Abstract
Motivated by recent density-matrix renormalization group (DMRG) calculations [Yan, Huse, and White, Science 332, 1173 (2011)], which claimed that the ground state of the nearest-neighbor spin-1/2 Heisenberg antiferromagnet on the kagome lattice geometry is a fully gapped spin liquid with numerical signatures of Z(2) gauge structure, and a further theoretical work [Lu, Ran, and Lee, Phys. Rev. B 83, 224413 (2011)], which gave a classification of all Schwinger-fermion mean-field fully symmetric Z(2) spin liquids on the kagome lattice, we have thoroughly studied Gutzwiller-projected fermionic wave functions by using quantum variational Monte Carlo techniques, hence implementing exactly the constraint of one fermion per site. In particular, we investigated the energetics of all Z(2) candidates (gapped and gapless) that lie in the neighborhood of the energetically competitive U(1) gapless spin liquids. By using a state-of-the-art optimization method, we were able to conclusively show that the U(1) Dirac state is remarkably stable with respect to all Z(2) spin liquids in its neighborhood, and in particular for opening a gap toward the so-called Z(2)[0,pi]beta state, which was conjectured to describe the ground state obtained by the DMRG method. Finally, we also considered the addition of a small second nearest-neighbor exchange coupling of both antiferromagnetic and ferromagnetic type, and obtained similar results, namely, a U(1) Dirac spin-liquid ground state.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.