Carbon nanodots (CNDs) hold great potential in imaging and drug delivery applications. In this study, nitrogen-doped CNDs (NCNDs) were coupled to the anticancer agent paclitaxel (PTX) through a labile ester bond. NCNDs showed excellent cell viability and endowed the NCND-PTX conjugate with good water solubility. The hybrid integrates the optical properties of the nanodots with the anticancer function of the drug into a single unit. Cytotoxicity was evaluated in breast, cervix, lung, and prostate cancer cell lines by the MTT assay while the cellular uptake was monitored using confocal microscopy. NCND-PTX induced apoptosis in cancer cells exhibiting slightly better anticancer activity compared to the drug alone. Moreover, the course of the NCND-PTX interaction with cancer cells was monitored using an xCELLigence system. The NCND-based conjugate represents a promising platform for bioimaging and drug delivery.
Nitrogen-doped carbon nanodots for bioimaging and delivery of paclitaxel
Cacioppo, MicheleMembro del Collaboration Group
;Arcudi, FrancescaMembro del Collaboration Group
;Prato, Maurizio
2018-01-01
Abstract
Carbon nanodots (CNDs) hold great potential in imaging and drug delivery applications. In this study, nitrogen-doped CNDs (NCNDs) were coupled to the anticancer agent paclitaxel (PTX) through a labile ester bond. NCNDs showed excellent cell viability and endowed the NCND-PTX conjugate with good water solubility. The hybrid integrates the optical properties of the nanodots with the anticancer function of the drug into a single unit. Cytotoxicity was evaluated in breast, cervix, lung, and prostate cancer cell lines by the MTT assay while the cellular uptake was monitored using confocal microscopy. NCND-PTX induced apoptosis in cancer cells exhibiting slightly better anticancer activity compared to the drug alone. Moreover, the course of the NCND-PTX interaction with cancer cells was monitored using an xCELLigence system. The NCND-based conjugate represents a promising platform for bioimaging and drug delivery.File | Dimensione | Formato | |
---|---|---|---|
c8tb01796d.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
2.98 MB
Formato
Adobe PDF
|
2.98 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.