Supramolecular chemistry is moving into a direction in which the composition of a chemical equilibrium is no longer determined by thermodynamics but by the efficiency with which kinetic states can be populated by energy consuming processes. Herein, we show that DNA is ideally suited for programming chemically fueled dissipative self‐assembly processes. Advantages of the DNA‐based systems presented in this study include a perfect control over the activation site for the chemical fuel in terms of selectivity and affinity, highly selective fuel consumption that occurs exclusively in the activated complex, and a high tolerance for the presence of waste products. Finally, it is shown that chemical fuels can be used to selectively activate different functions in a system of higher complexity embedded with multiple response pathways.

Dissipative Synthetic DNA-Based Receptors for the Transient Loading and Release of Molecular Cargo

Ragazzon, Giulio;
2018-01-01

Abstract

Supramolecular chemistry is moving into a direction in which the composition of a chemical equilibrium is no longer determined by thermodynamics but by the efficiency with which kinetic states can be populated by energy consuming processes. Herein, we show that DNA is ideally suited for programming chemically fueled dissipative self‐assembly processes. Advantages of the DNA‐based systems presented in this study include a perfect control over the activation site for the chemical fuel in terms of selectivity and affinity, highly selective fuel consumption that occurs exclusively in the activated complex, and a high tolerance for the presence of waste products. Finally, it is shown that chemical fuels can be used to selectively activate different functions in a system of higher complexity embedded with multiple response pathways.
Pubblicato
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1521-3773
File in questo prodotto:
File Dimensione Formato  
Grosso_et_al-2018-Angewandte_Chemie_International_Edition.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 2.18 MB
Formato Adobe PDF
2.18 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2941131
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 53
social impact