We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au+Au collisions for energies ranging from sNN=7.7 to 200 GeV. The third harmonic v32{2}=⟨cos3(ϕ1-ϕ2)⟩, where ϕ1-ϕ2 is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs Δη=η1-η2. Nonzero v32{2} is directly related to the previously observed large-Δη narrow-Δϕ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity quark gluon plasma phase. For sufficiently central collisions, v32{2} persist down to an energy of 7.7 GeV, suggesting that quark gluon plasma may be created even in these low energy collisions. In peripheral collisions at these low energies, however, v32{2} is consistent with zero. When scaled by the pseudorapidity density of charged-particle multiplicity per participating nucleon pair, v32{2} for central collisions shows a minimum near sNN=20  GeV.

Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Au+Au Collisions at RHIC

Contin, G.;Di Ruzza, B.;
2016-01-01

Abstract

We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au+Au collisions for energies ranging from sNN=7.7 to 200 GeV. The third harmonic v32{2}=⟨cos3(ϕ1-ϕ2)⟩, where ϕ1-ϕ2 is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs Δη=η1-η2. Nonzero v32{2} is directly related to the previously observed large-Δη narrow-Δϕ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity quark gluon plasma phase. For sufficiently central collisions, v32{2} persist down to an energy of 7.7 GeV, suggesting that quark gluon plasma may be created even in these low energy collisions. In peripheral collisions at these low energies, however, v32{2} is consistent with zero. When scaled by the pseudorapidity density of charged-particle multiplicity per participating nucleon pair, v32{2} for central collisions shows a minimum near sNN=20  GeV.
File in questo prodotto:
File Dimensione Formato  
PhysRevLett.116.11230_beam_energy_dependence.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 344.72 kB
Formato Adobe PDF
344.72 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2941992
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 55
social impact