The bulky 1,4-cyclohexanedimethanol was used as co-monomer for introducing rigidity in lipase synthetized poly(itaconates). Poly(1,4-cyclohexanedimethanol itaconate) was synthetized on a 14 g scale at 50°C, under solvent-free conditions and 70 mbar using only 135 Units of lipase B from Candida antarctica per gram of monomer. The mild conditions preserved the labile vinyl group of itaconic acid and avoided the decomposition of 1,4-cyclohexanedimethanol observed in chemical polycondensation. Experimental and computational data show that the enzymatic polycondensation proceeds despite the low reactivity of C1 of itaconic acid. The rigid poly(1,4-cyclohexanedimethanol itaconate) was investigated in the context of aza-Michael addition of hexamethylenediamine and 2-phenylethylamine to the vinyl moiety. The enzymatically synthesized linear poly(1,4-butylene itaconate) was studied as a comparison. The two oligoesters (Molecular Weights ranging from 720 to 2859 g mol-1) reacted on a gram scale, at 40-50°C, at atmospheric pressure and in solvent-free conditions. The addition of primary amines led to amine-functionalized oligoesters but also to chain degradation, and the reactivity of the poly(itaconate)s was influenced by the rigidity of the polymer chain. Upon the formation of the secondary amine adduct, the linear poly(1,4-butylene itaconate) undergoes fast intramolecular cyclization and subsequent degradation via pyrrolidone formation, especially in the presence of hexamethylenediamine. On the contrary, the bulky 1,4-cyclohexanedimethanol confers rigidity to poly(1,4-cyclohexanedimethanol itaconate), which hampers the intramolecular cyclization. Also the bulkiness of the amine and the use of solvent emerged as factors that affect the reactivity of poly(itaconate)s. Therefore, the possibility to insert discrete units of itaconic acid in oligoesters using biocatalysts under solvent-free mild conditions opens new routes for the generation of bio-based functional polymers or amine-triggered degradable materials, as a function of the rigidity of the polyester chain.

Functionalization of Enzymatically Synthesized Rigid Poly(itaconate)s via Post-Polymerization aza-Michael Addition of Primary Amines

GUARNERI, ALICE
Investigation
;
Marco Cespugli
Investigation
;
Fioretta Asaro
Methodology
;
Cynthia Ebert
Methodology
;
Lucia Gardossi
Conceptualization
2019-01-01

Abstract

The bulky 1,4-cyclohexanedimethanol was used as co-monomer for introducing rigidity in lipase synthetized poly(itaconates). Poly(1,4-cyclohexanedimethanol itaconate) was synthetized on a 14 g scale at 50°C, under solvent-free conditions and 70 mbar using only 135 Units of lipase B from Candida antarctica per gram of monomer. The mild conditions preserved the labile vinyl group of itaconic acid and avoided the decomposition of 1,4-cyclohexanedimethanol observed in chemical polycondensation. Experimental and computational data show that the enzymatic polycondensation proceeds despite the low reactivity of C1 of itaconic acid. The rigid poly(1,4-cyclohexanedimethanol itaconate) was investigated in the context of aza-Michael addition of hexamethylenediamine and 2-phenylethylamine to the vinyl moiety. The enzymatically synthesized linear poly(1,4-butylene itaconate) was studied as a comparison. The two oligoesters (Molecular Weights ranging from 720 to 2859 g mol-1) reacted on a gram scale, at 40-50°C, at atmospheric pressure and in solvent-free conditions. The addition of primary amines led to amine-functionalized oligoesters but also to chain degradation, and the reactivity of the poly(itaconate)s was influenced by the rigidity of the polymer chain. Upon the formation of the secondary amine adduct, the linear poly(1,4-butylene itaconate) undergoes fast intramolecular cyclization and subsequent degradation via pyrrolidone formation, especially in the presence of hexamethylenediamine. On the contrary, the bulky 1,4-cyclohexanedimethanol confers rigidity to poly(1,4-cyclohexanedimethanol itaconate), which hampers the intramolecular cyclization. Also the bulkiness of the amine and the use of solvent emerged as factors that affect the reactivity of poly(itaconate)s. Therefore, the possibility to insert discrete units of itaconic acid in oligoesters using biocatalysts under solvent-free mild conditions opens new routes for the generation of bio-based functional polymers or amine-triggered degradable materials, as a function of the rigidity of the polyester chain.
2019
27-mar-2019
Pubblicato
File in questo prodotto:
File Dimensione Formato  
ESI_rev_26 March_clean_Guarneri_et_al.pdf

Accesso chiuso

Descrizione: supplementary data
Tipologia: Altro materiale allegato
Licenza: Copyright Editore
Dimensione 9.99 MB
Formato Adobe PDF
9.99 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
adsc.201900055.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 1.88 MB
Formato Adobe PDF
1.88 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2943690_adsc.201900055-PostPrint.pdf

accesso aperto

Descrizione: Post Print VQR3
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 2.45 MB
Formato Adobe PDF
2.45 MB Adobe PDF Visualizza/Apri
2943690_ESI_rev_26 March_clean_Guarneri_et_al-PostPrint.pdf

accesso aperto

Descrizione: Post Print VQR3
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 10.6 MB
Formato Adobe PDF
10.6 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2943690
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 28
social impact