The recent reduction of laser pulse duration down to the attosecond regime offers unprecedented opportunities to investigate ultrafast changes in the electron density before nuclear motion sets in. Here, we investigate the hole dynamics in the Caffeine molecule that is induced by an ionizing XUV pulse of 6 fs duration using the approximate time-dependent density functional theory method TD-DFTB. In order to account for ionization in a localized atomic orbital basis we apply a complex absorbing potential to model the continuum. Propagation of the time-dependent Kohn–Sham equations allows us to extract the time-dependent hole density taking the pulse shape explicitly into account. Results show that the sudden ionization picture, which is often used to motivate an uncorrelated initial state, fails for realistic pulses. We further find a strong dependence of the hole dynamics on the polarization of the laser field. Notwithstanding, we observe fs charge migration between two distant functional groups in Caffeine even after averaging over the molecular orientation.

Pulse shape and molecular orientation determine the attosecond charge migration in Caffeine

Marciniak, Alexandre;
2018-01-01

Abstract

The recent reduction of laser pulse duration down to the attosecond regime offers unprecedented opportunities to investigate ultrafast changes in the electron density before nuclear motion sets in. Here, we investigate the hole dynamics in the Caffeine molecule that is induced by an ionizing XUV pulse of 6 fs duration using the approximate time-dependent density functional theory method TD-DFTB. In order to account for ionization in a localized atomic orbital basis we apply a complex absorbing potential to model the continuum. Propagation of the time-dependent Kohn–Sham equations allows us to extract the time-dependent hole density taking the pulse shape explicitly into account. Results show that the sudden ionization picture, which is often used to motivate an uncorrelated initial state, fails for realistic pulses. We further find a strong dependence of the hole dynamics on the polarization of the laser field. Notwithstanding, we observe fs charge migration between two distant functional groups in Caffeine even after averaging over the molecular orientation.
2018
Pubblicato
https://link.springer.com/article/10.1140/epjb/e2018-90223-5
File in questo prodotto:
File Dimensione Formato  
Niehaus2018_Article_PulseShapeAndMolecularOrientat.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2945328
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact