Optimally doped cuprate are characterized by the presence of superconducting fluctuations in a relatively large temperature region above the critical transition temperature. We reveal here that the effect of thermal disorder, which decreases the condensate phase coherence at equilibrium, can be dynamically contrasted by photoexcitation with ultrashort midinfrared pulses. In particular, our findings reveal that light pulses with photon energy comparable to the amplitude of the superconducting gap and polarized in plane along the copper-copper direction can dynamically enhance the optical response associated with the onset of superconductivity. We propose that this effect can be rationalized by an effective d-wave BCS model, which reveals that midinfrared pulses result in a transient increase of the phase coherence.
Signatures of Enhanced Superconducting Phase Coherence in Optimally Doped $mathrmBi_2mathrmSr_2mathrmY_0.08mathrmCa_0.92mathrmCu_2mathrmO_8+ensuremathdelta$ Driven by Midinfrared Pulse Excitations
Giusti, F.;Marciniak, A.;Randi, F.;Sparapassi, G.;Avella, A.;Fausti, D.
2019-01-01
Abstract
Optimally doped cuprate are characterized by the presence of superconducting fluctuations in a relatively large temperature region above the critical transition temperature. We reveal here that the effect of thermal disorder, which decreases the condensate phase coherence at equilibrium, can be dynamically contrasted by photoexcitation with ultrashort midinfrared pulses. In particular, our findings reveal that light pulses with photon energy comparable to the amplitude of the superconducting gap and polarized in plane along the copper-copper direction can dynamically enhance the optical response associated with the onset of superconductivity. We propose that this effect can be rationalized by an effective d-wave BCS model, which reveals that midinfrared pulses result in a transient increase of the phase coherence.File | Dimensione | Formato | |
---|---|---|---|
PhysRevLett.122.067002.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
1.3 MB
Formato
Adobe PDF
|
1.3 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.