Ultrafast XUV chemistry is offering new opportunities to decipher the complex dynamics taking place in highly excited molecular states and thus better understand fundamental natural phenomena as molecule formation in interstellar media. We used ultrashort XUV light pulses to perform XUV pump–IR probe experiments in caffeine as a model of prebiotic molecule. We observed a 40 fs decay of excited cationic states. Guided by quantum calculations, this time scale is interpreted in terms of a nonadiabatic cascade through a large number of highly correlated states. This shows that the correlation driven nonadiabatic relaxation seems to be a general process for highly excited states, which might impact our understanding of molecular processing in interstellar media.
Ultrafast Nonadiabatic Cascade and Subsequent Photofragmentation of Extreme Ultraviolet Excited Caffeine Molecule
Marciniak, Alexandre;
2018-01-01
Abstract
Ultrafast XUV chemistry is offering new opportunities to decipher the complex dynamics taking place in highly excited molecular states and thus better understand fundamental natural phenomena as molecule formation in interstellar media. We used ultrashort XUV light pulses to perform XUV pump–IR probe experiments in caffeine as a model of prebiotic molecule. We observed a 40 fs decay of excited cationic states. Guided by quantum calculations, this time scale is interpreted in terms of a nonadiabatic cascade through a large number of highly correlated states. This shows that the correlation driven nonadiabatic relaxation seems to be a general process for highly excited states, which might impact our understanding of molecular processing in interstellar media.File | Dimensione | Formato | |
---|---|---|---|
acs.jpclett.8b02964.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
2.01 MB
Formato
Adobe PDF
|
2.01 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
jz8b02964_si_001.pdf
Accesso chiuso
Descrizione: Supporting information
Tipologia:
Altro materiale allegato
Licenza:
Copyright Editore
Dimensione
2.19 MB
Formato
Adobe PDF
|
2.19 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.