Lies are intentional distortions of event knowledge. No experimental data are available on manipulating lying processes. To address this issue, we stimulated the dorsolateral prefrontal cortex (DLPFC) using transcranial direct current stimulation (tDCS). Fifteen healthy volunteers were tested before and after tDCS (anodal, cathodal, and sham). Two types of truthful (truthful selected: TS; truthful unselected: TU) and deceptive (lie selected: LS; lie unselected: LU) responses were evaluated using a computer-controlled task. Reaction times (RTs) and accuracy were collected and used as dependent variables. In the baseline task, the RT was significantly longer for lie responses than for true responses ([mean +/- standard error] 1153.4 +/- 42.0 ms vs. 1039.6 +/- 36.6 ms; F(1,14) = 27.25, P = 0.00013). At baseline, RT for selected pictures was significantly shorter than RT for unselected pictures (1051.26 +/- 39.0 ms vs. 1141.76 +/- 41.1 ms; F(1,14) = 34.85, P = 0.00004). Whereas after cathodal and sham stimulation, lie responses remained unchanged (cathodal 5.26 +/- 2.7%; sham 5.66 +/- 3.6%), after anodal tDCS, RTs significantly increased but did so only for LS responses (16.86 +/- 5.0%; P = 0.002). These findings show that manipulation of brain function with DLPFC tDCS specifically influences experimental deception and that distinctive neural mechanisms underlie different types of lies.
Lie-specific involvement of dorsolateral prefrontal cortex in deception
Marceglia S;
2008-01-01
Abstract
Lies are intentional distortions of event knowledge. No experimental data are available on manipulating lying processes. To address this issue, we stimulated the dorsolateral prefrontal cortex (DLPFC) using transcranial direct current stimulation (tDCS). Fifteen healthy volunteers were tested before and after tDCS (anodal, cathodal, and sham). Two types of truthful (truthful selected: TS; truthful unselected: TU) and deceptive (lie selected: LS; lie unselected: LU) responses were evaluated using a computer-controlled task. Reaction times (RTs) and accuracy were collected and used as dependent variables. In the baseline task, the RT was significantly longer for lie responses than for true responses ([mean +/- standard error] 1153.4 +/- 42.0 ms vs. 1039.6 +/- 36.6 ms; F(1,14) = 27.25, P = 0.00013). At baseline, RT for selected pictures was significantly shorter than RT for unselected pictures (1051.26 +/- 39.0 ms vs. 1141.76 +/- 41.1 ms; F(1,14) = 34.85, P = 0.00004). Whereas after cathodal and sham stimulation, lie responses remained unchanged (cathodal 5.26 +/- 2.7%; sham 5.66 +/- 3.6%), after anodal tDCS, RTs significantly increased but did so only for LS responses (16.86 +/- 5.0%; P = 0.002). These findings show that manipulation of brain function with DLPFC tDCS specifically influences experimental deception and that distinctive neural mechanisms underlie different types of lies.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.