In this note we discuss the conditional stability issue for the finite dimensional Calderón problem for the fractional Schrödinger equation with a finite number of measurements. More precisely, we assume that the unknown potential $ q in L^{infty}(Omega) $ in the equation $ ((- Delta)^s+ q)u = 0 mbox{ in } Omegasubset mathbb{R}^n $ satisfies the a priori assumption that it is contained in a finite dimensional subspace of $ L^{infty}(Omega) $. Under this condition we prove Lipschitz stability estimates for the fractional Calderón problem by means of finitely many Cauchy data depending on $ q $. We allow for the possibility of zero being a Dirichlet eigenvalue of the associated fractional Schrödinger equation. Our result relies on the strong Runge approximation property of the fractional Schrödinger equation.

Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data

Eva Sincich
2019-01-01

Abstract

In this note we discuss the conditional stability issue for the finite dimensional Calderón problem for the fractional Schrödinger equation with a finite number of measurements. More precisely, we assume that the unknown potential $ q in L^{infty}(Omega) $ in the equation $ ((- Delta)^s+ q)u = 0 mbox{ in } Omegasubset mathbb{R}^n $ satisfies the a priori assumption that it is contained in a finite dimensional subspace of $ L^{infty}(Omega) $. Under this condition we prove Lipschitz stability estimates for the fractional Calderón problem by means of finitely many Cauchy data depending on $ q $. We allow for the possibility of zero being a Dirichlet eigenvalue of the associated fractional Schrödinger equation. Our result relies on the strong Runge approximation property of the fractional Schrödinger equation.
2019
Pubblicato
File in questo prodotto:
File Dimensione Formato  
Ruland_Sincich_IPI_19.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 395.13 kB
Formato Adobe PDF
395.13 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2946779
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact