In this paper, we introduce the concept of nonsystematic turbo codes and compare them with classical systematic turbo codes. Nonsystematic turbo codes can achieve lower error floors than systematic turbo codes because of their superior effective free distance properties. Moreover, they can achieve comparable performance in the waterfall region if the nonsystematic constituent encoder has a low-weight feedforward inverse. A uniform interleaver analysis is used to show that rate R=1/3 turbo codes using nonsystematic constituent encoders have larger effective free distances than when systematic constituent encoders are used. Also, mutual information-based transfer characteristics and extrinsic information transfer charts are used to show that rate R=1/3 turbo codes with nonsystematic constituent encoders having low-weight feedforward inverses achieve convergence thresholds comparable to those achieved with systematic constituent encoders. Catastrophic encoders, which do not possess a feedforward inverse, are shown to be capable of achieving low convergence thresholds by doping the code with a small fraction of systematic bits. Finally, we give tables of good nonsystematic turbo codes and present simulation results comparing the performance of systematic and nonsystematic turbo codes.

Nonsystematic turbo codes

Vatta F.
Membro del Collaboration Group
;
2005-01-01

Abstract

In this paper, we introduce the concept of nonsystematic turbo codes and compare them with classical systematic turbo codes. Nonsystematic turbo codes can achieve lower error floors than systematic turbo codes because of their superior effective free distance properties. Moreover, they can achieve comparable performance in the waterfall region if the nonsystematic constituent encoder has a low-weight feedforward inverse. A uniform interleaver analysis is used to show that rate R=1/3 turbo codes using nonsystematic constituent encoders have larger effective free distances than when systematic constituent encoders are used. Also, mutual information-based transfer characteristics and extrinsic information transfer charts are used to show that rate R=1/3 turbo codes with nonsystematic constituent encoders having low-weight feedforward inverses achieve convergence thresholds comparable to those achieved with systematic constituent encoders. Catastrophic encoders, which do not possess a feedforward inverse, are shown to be capable of achieving low convergence thresholds by doping the code with a small fraction of systematic bits. Finally, we give tables of good nonsystematic turbo codes and present simulation results comparing the performance of systematic and nonsystematic turbo codes.
2005
Pubblicato
https://ieeexplore.ieee.org/document/1532480
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2947070
 Avviso

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 19
social impact