We show that a constant amount of space is sufficient to simulate a polynomial-space bounded Turing machine by P systems with active membranes. We thus obtain a new characterisation of PSPACE, which raises interesting questions about the definition of space complexity for P systems. We then propose an alternative definition, where the size of the alphabet and the number of membrane labels of each P system are also taken into account. Finally we prove that, when less than a logarithmic number of membrane labels is available, moving the input objects around the membrane structure without rewriting them is not enough to even distinguish inputs of the same length.
Constant-space p systems with active membranes
Manzoni Luca;
2014-01-01
Abstract
We show that a constant amount of space is sufficient to simulate a polynomial-space bounded Turing machine by P systems with active membranes. We thus obtain a new characterisation of PSPACE, which raises interesting questions about the definition of space complexity for P systems. We then propose an alternative definition, where the size of the alphabet and the number of membrane labels of each P system are also taken into account. Finally we prove that, when less than a logarithmic number of membrane labels is available, moving the input objects around the membrane structure without rewriting them is not enough to even distinguish inputs of the same length.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.