Diamonds and their inclusions are unique fragments of deep Earth, which provide rare samples from inaccessible portions of our planet. Inclusion-free diamonds cannot provide information on depth of formation, which could be crucial to understand how the carbon cycle operated in the past. Inclusions in diamonds, which remain uncorrupted over geological times, may instead provide direct records of deep Earth's evolution. Here, we applied elastic geothermobarometry to a diamond-magnesiochromite (mchr) host-inclusion pair from the Udachnaya kimberlite (Siberia, Russia), one of the most important sources of natural diamonds. By combining X-ray diffraction and Fourier-transform infrared spectroscopy data with a new elastic model, we obtained entrapment conditions, Ptrap = 6.5(2) GPa and Ttrap = 1125(32)-1140(33) °C, for the mchr inclusion. These conditions fall on a ca. 35 mW/m2 geotherm and are colder than the great majority of mantle xenoliths from similar depth in the same kimberlite. Our results indicate that cold cratonic conditions persisted for billions of years to at least 200 km in the local lithosphere. The composition of the mchr also indicates that at this depth the lithosphere was, at least locally, ultra-depleted at the time of diamond formation, as opposed to the melt-metasomatized, enriched composition of most xenoliths.

Diamond-inclusion system recording old deep lithosphere conditions at Udachnaya (Siberia)

Andreozzi, Giovanni B;Periotto, Benedetta;Princivalle, Francesco;Lenaz, Davide;
2019-01-01

Abstract

Diamonds and their inclusions are unique fragments of deep Earth, which provide rare samples from inaccessible portions of our planet. Inclusion-free diamonds cannot provide information on depth of formation, which could be crucial to understand how the carbon cycle operated in the past. Inclusions in diamonds, which remain uncorrupted over geological times, may instead provide direct records of deep Earth's evolution. Here, we applied elastic geothermobarometry to a diamond-magnesiochromite (mchr) host-inclusion pair from the Udachnaya kimberlite (Siberia, Russia), one of the most important sources of natural diamonds. By combining X-ray diffraction and Fourier-transform infrared spectroscopy data with a new elastic model, we obtained entrapment conditions, Ptrap = 6.5(2) GPa and Ttrap = 1125(32)-1140(33) °C, for the mchr inclusion. These conditions fall on a ca. 35 mW/m2 geotherm and are colder than the great majority of mantle xenoliths from similar depth in the same kimberlite. Our results indicate that cold cratonic conditions persisted for billions of years to at least 200 km in the local lithosphere. The composition of the mchr also indicates that at this depth the lithosphere was, at least locally, ultra-depleted at the time of diamond formation, as opposed to the melt-metasomatized, enriched composition of most xenoliths.
File in questo prodotto:
File Dimensione Formato  
2019 Nestola et al Diamond inclusion system SC REP_compressed.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 571.92 kB
Formato Adobe PDF
571.92 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2948469
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 23
social impact