Gas boilers can be integrated into professional ovens for steamcooking processes. Their heat-transfer efficiency depends on several parameters, as exhaust gas temperature, combustion stability, fuel type, excess air. Computational fluid dynamics (CFD henceforth) provides a viable option to assess several digital prototypes of gas boilers under different operation conditions. Short setup-time, low computational cost and close matching with experimental results are key features of a CFD model suitable for the industrial design. We propose a reliable and computationally-efficient CFD model for gas boilers, operating under steady conditions. The model does not take explicitly into account both combustion and water boiling. The accuracy of the proposed model is confirmed by the excellent agreement between experimental measurements of the exhaust gas temperatures and the corresponding numerical results.
A reliable and computationally efficient model for professional gas boilers
Emidio Tiberi
;Riccardo Furlanetto
;Marzio Piller
2019-01-01
Abstract
Gas boilers can be integrated into professional ovens for steamcooking processes. Their heat-transfer efficiency depends on several parameters, as exhaust gas temperature, combustion stability, fuel type, excess air. Computational fluid dynamics (CFD henceforth) provides a viable option to assess several digital prototypes of gas boilers under different operation conditions. Short setup-time, low computational cost and close matching with experimental results are key features of a CFD model suitable for the industrial design. We propose a reliable and computationally-efficient CFD model for gas boilers, operating under steady conditions. The model does not take explicitly into account both combustion and water boiling. The accuracy of the proposed model is confirmed by the excellent agreement between experimental measurements of the exhaust gas temperatures and the corresponding numerical results.File | Dimensione | Formato | |
---|---|---|---|
IJISE330206 TIBERI_185411[15412].pdf
Accesso chiuso
Descrizione: Articolo principale
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
9.22 MB
Formato
Adobe PDF
|
9.22 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.