In this paper we propose and describe a parallel implementation of a block preconditioner for the solution of saddle point linear systems arising from Finite Element (FE) discretization of 3D coupled consolidation problems. The Mixed Constraint Preconditioner developed in [L. Bergamaschi, M. Ferronato, G. Gambolati, Mixed constraint preconditioners for the solution to FE coupled consolidation equations, J. Comput. Phys., 227(23) (2008)] is combined with the parallel FSAI preconditioner which is used here to approximate the inverses of both the structural (1, 1) block and an appropriate Schur complement matrix. The resulting preconditioner proves effective in the acceleration of the BiCGSTAB iterative solver. Numerical results on a number of test cases of size up to 2 million unknowns and 120 million nonzeros show the perfect scalability of the overall code up to 256 processors.
FSAI-based parallel mixed constraint preconditioners for saddle point problems arising in geomechanics
MARTINEZ A
2011-01-01
Abstract
In this paper we propose and describe a parallel implementation of a block preconditioner for the solution of saddle point linear systems arising from Finite Element (FE) discretization of 3D coupled consolidation problems. The Mixed Constraint Preconditioner developed in [L. Bergamaschi, M. Ferronato, G. Gambolati, Mixed constraint preconditioners for the solution to FE coupled consolidation equations, J. Comput. Phys., 227(23) (2008)] is combined with the parallel FSAI preconditioner which is used here to approximate the inverses of both the structural (1, 1) block and an appropriate Schur complement matrix. The resulting preconditioner proves effective in the acceleration of the BiCGSTAB iterative solver. Numerical results on a number of test cases of size up to 2 million unknowns and 120 million nonzeros show the perfect scalability of the overall code up to 256 processors.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.