We focus on efficient preconditioning techniques for sequences of KKT linear systems arising from the interior point solution of large convex quadratic programming problems. Constraint Preconditioners~(CPs), though very effective in accelerating Krylov methods in the solution of KKT systems, have a very high computational cost in some instances, because their factorization may be the most time-consuming task at each interior point iteration. We overcome this problem by computing the CP from scratch only at selected interior point iterations and by updating the last computed CP at the remaining iterations, via suitable low-rank modifications based on a BFGS-like formula. This work extends the limited-memory preconditioners for symmetric positive definite matrices proposed by Gratton, Sartenaer and Tshimanga in [SIAM J. Optim. 2011; 21(3):912--935, by exploiting specific features of KKT systems and CPs. We prove that the updated preconditioners still belong to the class of exact CPs, thus allowing the use of the conjugate gradient method. Furthermore, they have the property of increasing the number of unit eigenvalues of the preconditioned matrix as compared to generally used CPs. Numerical experiments are reported, which show the effectiveness of our updating technique when the cost for the factorization of the CP is high.

BFGS-like updates of constraint preconditioners for sequences of KKT linear systems in quadratic programming

Angeles Martinez Calomardo
2018-01-01

Abstract

We focus on efficient preconditioning techniques for sequences of KKT linear systems arising from the interior point solution of large convex quadratic programming problems. Constraint Preconditioners~(CPs), though very effective in accelerating Krylov methods in the solution of KKT systems, have a very high computational cost in some instances, because their factorization may be the most time-consuming task at each interior point iteration. We overcome this problem by computing the CP from scratch only at selected interior point iterations and by updating the last computed CP at the remaining iterations, via suitable low-rank modifications based on a BFGS-like formula. This work extends the limited-memory preconditioners for symmetric positive definite matrices proposed by Gratton, Sartenaer and Tshimanga in [SIAM J. Optim. 2011; 21(3):912--935, by exploiting specific features of KKT systems and CPs. We prove that the updated preconditioners still belong to the class of exact CPs, thus allowing the use of the conjugate gradient method. Furthermore, they have the property of increasing the number of unit eigenvalues of the preconditioned matrix as compared to generally used CPs. Numerical experiments are reported, which show the effectiveness of our updating technique when the cost for the factorization of the CP is high.
File in questo prodotto:
File Dimensione Formato  
bergamaschietal2018nlaa.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 711.55 kB
Formato Adobe PDF
711.55 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2950542_bergamaschietal2018nlaa-PostPrint.pdf

accesso aperto

Descrizione: Post Print VQR3
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2950542
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
social impact