Enhanced indexation is an investment strategy that aims to generate moderate and consistent excess returns with respect to a tracked benchmark index. In this work, we introduce an optimization approach where the risk of under-performing the benchmark is separated from the potential over-performance, and the Sharpe ratio measures the profitability of the active management. In addition, a cardinality constraint controls the number of active positions in the portfolio, while a turnover threshold limits the transaction costs. We adopt a polynomial goal programming approach to combine these objectives with the investor’s preferences. An improved version of the particle swarm optimization algorithm with a novel constraint-handling mechanism is proposed to solve the optimization problem. A numerical example, where the Euro Stoxx 50 Index is used as the benchmark, shows that our method consistently produces larger returns, with reduced costs and risk exposition, than the standard indexing strategies over a 10-year backtesting period.
Polynomial goal programming and particle swarm optimization for enhanced indexation
Massimiliano Kaucic
;
2020-01-01
Abstract
Enhanced indexation is an investment strategy that aims to generate moderate and consistent excess returns with respect to a tracked benchmark index. In this work, we introduce an optimization approach where the risk of under-performing the benchmark is separated from the potential over-performance, and the Sharpe ratio measures the profitability of the active management. In addition, a cardinality constraint controls the number of active positions in the portfolio, while a turnover threshold limits the transaction costs. We adopt a polynomial goal programming approach to combine these objectives with the investor’s preferences. An improved version of the particle swarm optimization algorithm with a novel constraint-handling mechanism is proposed to solve the optimization problem. A numerical example, where the Euro Stoxx 50 Index is used as the benchmark, shows that our method consistently produces larger returns, with reduced costs and risk exposition, than the standard indexing strategies over a 10-year backtesting period.File | Dimensione | Formato | |
---|---|---|---|
Kaucic_Polynomial goal programming and particle swarm optimization.pdf
Accesso chiuso
Descrizione: articolo
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
1.01 MB
Formato
Adobe PDF
|
1.01 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2951418_Kaucic_Polynomial goal programming and particle swarm optimization-PostPrint.pdf
accesso aperto
Descrizione: PostPrint VQR3
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Digital Rights Management non definito
Dimensione
1.42 MB
Formato
Adobe PDF
|
1.42 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.