We present cosmological hydrodynamical simulations including atomic and molecular non-equilibrium chemistry, multi-frequency radiative transfer (0.7-100 eV sampled over 150 frequency bins) and stellar population evolution to investigate the host candidates of the seeds of supermassive black holes coming from direct collapse of gas in primordial haloes direct-collapse black holes, DCBHs. We consistently address the role played by atomic and molecular cooling, stellar radiation and metal spreading of C, N, O, Ne, Mg, Si, S, Ca, Fe, etc. from primordial sources, as well as their implications for nearby quiescent proto-galaxies under different assumptions for early source emissivity, initial mass function, and metal yields. We find that putative DCBH (direct-collapse black holes) host candidates need powerful primordial stellar generations, since common solar-like stars and hot OB-type stars are neither able to determine the conditions for direct collapse nor capable of building up a dissociating Lyman-Werner background radiation field. Thermal and molecular features of the identified DCBH host candidates in the scenario with very massive primordial stars seem favourable, with illuminating Lyman-Werner intensities featuring values of 1 - 50J21. Nevertheless, additional nonlinear processes, such as merger events, substructure formation, rotational motions, and photo-evaporation, should inhibit pure direct-collapse black hole formation in two-third of the cases. Local turbulence may delay gas direct collapse almost irrespectively from other environmental conditions. The impact of large Lyman-Werner fluxes at distances smaller than 5 kpc is severely limited by metal pollution.

The seeds of supermassive black holes and the role of local radiation and metal spreading

Maio, Umberto
;
Borgani, Stefano;
2019-01-01

Abstract

We present cosmological hydrodynamical simulations including atomic and molecular non-equilibrium chemistry, multi-frequency radiative transfer (0.7-100 eV sampled over 150 frequency bins) and stellar population evolution to investigate the host candidates of the seeds of supermassive black holes coming from direct collapse of gas in primordial haloes direct-collapse black holes, DCBHs. We consistently address the role played by atomic and molecular cooling, stellar radiation and metal spreading of C, N, O, Ne, Mg, Si, S, Ca, Fe, etc. from primordial sources, as well as their implications for nearby quiescent proto-galaxies under different assumptions for early source emissivity, initial mass function, and metal yields. We find that putative DCBH (direct-collapse black holes) host candidates need powerful primordial stellar generations, since common solar-like stars and hot OB-type stars are neither able to determine the conditions for direct collapse nor capable of building up a dissociating Lyman-Werner background radiation field. Thermal and molecular features of the identified DCBH host candidates in the scenario with very massive primordial stars seem favourable, with illuminating Lyman-Werner intensities featuring values of 1 - 50J21. Nevertheless, additional nonlinear processes, such as merger events, substructure formation, rotational motions, and photo-evaporation, should inhibit pure direct-collapse black hole formation in two-third of the cases. Local turbulence may delay gas direct collapse almost irrespectively from other environmental conditions. The impact of large Lyman-Werner fluxes at distances smaller than 5 kpc is severely limited by metal pollution.
File in questo prodotto:
File Dimensione Formato  
1811.01964.pdf

Accesso chiuso

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2951523
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 17
social impact