The problem of estimating the parameters of biased and exponentially-damped multi-sinusoidal signals is addressed in this paper by a finite-time identification scheme based on Volterra integral operators. These parameters are the amplitudes, frequencies, initial phase angles, damping factors and the offset. The proposed strategy entails the design of a new kind of kernel function that, compared to existing ones, allows for the identification of the initial conditions of the signal-generator system. The worstcase behavior of the proposed algorithm in the presence of bounded additive disturbances is fully characterized by Input-to-State Stability arguments. Numerical examples including the comparisons with some existing tools are reported to show the effectiveness of the proposed methodology.

Finite-Time Estimation of Multiple Exponentially-Damped Sinusoidal Signals: A Kernel-based Approach

G. Pin
Membro del Collaboration Group
;
T. Parisini
Membro del Collaboration Group
2019-01-01

Abstract

The problem of estimating the parameters of biased and exponentially-damped multi-sinusoidal signals is addressed in this paper by a finite-time identification scheme based on Volterra integral operators. These parameters are the amplitudes, frequencies, initial phase angles, damping factors and the offset. The proposed strategy entails the design of a new kind of kernel function that, compared to existing ones, allows for the identification of the initial conditions of the signal-generator system. The worstcase behavior of the proposed algorithm in the presence of bounded additive disturbances is fully characterized by Input-to-State Stability arguments. Numerical examples including the comparisons with some existing tools are reported to show the effectiveness of the proposed methodology.
2019
9-mag-2019
Pubblicato
File in questo prodotto:
File Dimensione Formato  
Chen_Li_Pin_Fedele_Parisini_Automatica_23_3_2019.pdf

Open Access dal 10/05/2021

Descrizione: Articolo accettato
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Creative commons
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF Visualizza/Apri
1-s2.0-S0005109819301761-main.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2952720
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
social impact