Background Subclinical changes on the electrocardiogram are risk factors for cardiovascular mortality. Recognition and knowledge of electrolyte associations in cardiac electrophysiology are based on only in vitro models and observations in patients with severe medical conditions. Objectives This study sought to investigate associations between serum electrolyte concentrations and changes in cardiac electrophysiology in the general population. Methods Summary results collected from 153,014 individuals (54.4% women; mean age 55.1 ± 12.1 years) from 33 studies (of 5 ancestries) were meta-analyzed. Linear regression analyses examining associations between electrolyte concentrations (mmol/l of calcium, potassium, sodium, and magnesium), and electrocardiographic intervals (RR, QT, QRS, JT, and PR intervals) were performed. The study adjusted for potential confounders and also stratified by ancestry, sex, and use of antihypertensive drugs. Results Lower calcium was associated with longer QT intervals (−11.5 ms; 99.75% confidence interval [CI]: −13.7 to −9.3) and JT duration, with sex-specific effects. In contrast, higher magnesium was associated with longer QT intervals (7.2 ms; 99.75% CI: 1.3 to 13.1) and JT. Lower potassium was associated with longer QT intervals (−2.8 ms; 99.75% CI: −3.5 to −2.0), JT, QRS, and PR durations, but all potassium associations were driven by use of antihypertensive drugs. No physiologically relevant associations were observed for sodium or RR intervals. Conclusions The study identified physiologically relevant associations between electrolytes and electrocardiographic intervals in a large-scale analysis combining cohorts from different settings. The results provide insights for further cardiac electrophysiology research and could potentially influence clinical practice, especially the association between calcium and QT duration, by which calcium levels at the bottom 2% of the population distribution led to clinically relevant QT prolongation by >5 ms.

Effects of Calcium, Magnesium, and Potassium Concentrations on Ventricular Repolarization in Unselected Individuals.

Catamo E;Concas MP;Brumat M;Campana E;Robino A;Girotto G;
2019-01-01

Abstract

Background Subclinical changes on the electrocardiogram are risk factors for cardiovascular mortality. Recognition and knowledge of electrolyte associations in cardiac electrophysiology are based on only in vitro models and observations in patients with severe medical conditions. Objectives This study sought to investigate associations between serum electrolyte concentrations and changes in cardiac electrophysiology in the general population. Methods Summary results collected from 153,014 individuals (54.4% women; mean age 55.1 ± 12.1 years) from 33 studies (of 5 ancestries) were meta-analyzed. Linear regression analyses examining associations between electrolyte concentrations (mmol/l of calcium, potassium, sodium, and magnesium), and electrocardiographic intervals (RR, QT, QRS, JT, and PR intervals) were performed. The study adjusted for potential confounders and also stratified by ancestry, sex, and use of antihypertensive drugs. Results Lower calcium was associated with longer QT intervals (−11.5 ms; 99.75% confidence interval [CI]: −13.7 to −9.3) and JT duration, with sex-specific effects. In contrast, higher magnesium was associated with longer QT intervals (7.2 ms; 99.75% CI: 1.3 to 13.1) and JT. Lower potassium was associated with longer QT intervals (−2.8 ms; 99.75% CI: −3.5 to −2.0), JT, QRS, and PR durations, but all potassium associations were driven by use of antihypertensive drugs. No physiologically relevant associations were observed for sodium or RR intervals. Conclusions The study identified physiologically relevant associations between electrolytes and electrocardiographic intervals in a large-scale analysis combining cohorts from different settings. The results provide insights for further cardiac electrophysiology research and could potentially influence clinical practice, especially the association between calcium and QT duration, by which calcium levels at the bottom 2% of the population distribution led to clinically relevant QT prolongation by >5 ms.
File in questo prodotto:
File Dimensione Formato  
noordam2019.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2953384_noordam2019-PostPrint.pdf

accesso aperto

Descrizione: Post Print VQR3
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 1.49 MB
Formato Adobe PDF
1.49 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2953384
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 27
social impact