Terrestrial Laser Scanner (TLS) is an active instrument widely used for physical surface acquisition and data modeling. TLS provides both the geometry and the intensity information of scanned objects depending on their physical and chemical properties. The intensity data can be used to discriminate different materials, since intensity is proportional, among other parameters, to the reflectance of the target at the specific wavelength of the laser beam. This article focuses on the TLS-based recognition of rocks in simple sedimentary successions mainly constituted by limestones and marls. In particular, a series of experiments with an Optech ILRIS 3D TLS was carried out to verify the feasibility of this application, as well as to solve problems in data acquisition protocol and data processing. Results indicate that a TLS intensity-based discrimination can provide reliable information about the clay content of rocks in clean outcrop conditions if the geometrical aspects of the acquisition (i.e. distance) are taken into account. Reflectance values of limestones, marls and clays show, both in controlled conditions and in the field, clear differences due to the interaction of the laser beam (having a 1535 nm wavelength) with H2Obearing minerals and materials. Information about lithology can be therefore obtained also from real outcrops, at least if simple alternation of limestones and marls are considered. Comparison between reflectance values derived from TLS acquisition of an outcrop and the clay abundance curves obtained by gas chromatography on rock samples taken from the same stratigraphic section shows that reflectance is linked by an inverse linear relationship (correlation coefficient r D 0:85) to the abundance of clay minerals in the rocks. Reflectance series obtained from TLS data are proposed as a tool to evaluate the variation of clay content along a stratigraphic section. The possibility of linking reflectance values to lithological parameters (i.e. clay content) could provide a tool for lithological mapping of outcrops, with possible applications in various fields, ranging from petroleum geology to environmental engineering, stratigraphy and sedimentology.

Discrimination between marls and limestones using intensity data from terrestrial laser scanner

FRANCESCHI M;
2009-01-01

Abstract

Terrestrial Laser Scanner (TLS) is an active instrument widely used for physical surface acquisition and data modeling. TLS provides both the geometry and the intensity information of scanned objects depending on their physical and chemical properties. The intensity data can be used to discriminate different materials, since intensity is proportional, among other parameters, to the reflectance of the target at the specific wavelength of the laser beam. This article focuses on the TLS-based recognition of rocks in simple sedimentary successions mainly constituted by limestones and marls. In particular, a series of experiments with an Optech ILRIS 3D TLS was carried out to verify the feasibility of this application, as well as to solve problems in data acquisition protocol and data processing. Results indicate that a TLS intensity-based discrimination can provide reliable information about the clay content of rocks in clean outcrop conditions if the geometrical aspects of the acquisition (i.e. distance) are taken into account. Reflectance values of limestones, marls and clays show, both in controlled conditions and in the field, clear differences due to the interaction of the laser beam (having a 1535 nm wavelength) with H2Obearing minerals and materials. Information about lithology can be therefore obtained also from real outcrops, at least if simple alternation of limestones and marls are considered. Comparison between reflectance values derived from TLS acquisition of an outcrop and the clay abundance curves obtained by gas chromatography on rock samples taken from the same stratigraphic section shows that reflectance is linked by an inverse linear relationship (correlation coefficient r D 0:85) to the abundance of clay minerals in the rocks. Reflectance series obtained from TLS data are proposed as a tool to evaluate the variation of clay content along a stratigraphic section. The possibility of linking reflectance values to lithological parameters (i.e. clay content) could provide a tool for lithological mapping of outcrops, with possible applications in various fields, ranging from petroleum geology to environmental engineering, stratigraphy and sedimentology.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2954032
 Avviso

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 113
  • ???jsp.display-item.citation.isi??? 105
social impact