Although the etiology of multiple sclerosis is not yet understood, it is accepted that its pathogenesis involves both autoimmune and neurodegenerative processes, in which the role of autoreactive T-cells has been elucidated. Instead, the contribution of humoral response is still unclear, even if the presence of intrathecal antibodies and B-cells follicle-like structures in meninges of patients has been demonstrated. Several myelin and non-myelin antigens have been identified, but none has been validated as humoral biomarker. In particular autoantibodies against myelin proteins have been found also in healthy individuals, whereas non-myelin antigens have been implicated in neurodegenerative phase of the disease. To provide further putative autoantigens of multiple sclerosis, we investigated the antigen specificity of immunoglobulins present both in sera and in cerebrospinal fluid of patients using phage display technology in a new improved format. A human brain cDNA phage display library was constructed and enriched for open-read-frame fragments. This library was selected against pooled and purified immunoglobulins from cerebrospinal fluid and sera of multiple sclerosis patients. The antigen library was also screened against an antibody scFv library obtained from RNA of B cells purified from the cerebrospinal fluid of two relapsing remitting patients. From all biopanning a complex of 14 antigens were identified; in particular, one of these antigens, corresponding to DDX24 protein, was present in all selections. The ability of more frequently isolated antigens to discriminate between sera from patients with multiple sclerosis or other neurological diseases was investigated. The more promising novel candidate autoantigens were DDX24 and TCERG1. Both are implicated in RNA modification and regulation which can be altered in neurodegenerative processes. Therefore, we propose that they could be a marker of a particular disease activity state.

Identification of novel non-myelin biomarkers in multiple sclerosis using an improved phage-display approach

Cortini, Andrea;Bembich, Sara;Marson, Lorena;Edomi, Paolo
2019-01-01

Abstract

Although the etiology of multiple sclerosis is not yet understood, it is accepted that its pathogenesis involves both autoimmune and neurodegenerative processes, in which the role of autoreactive T-cells has been elucidated. Instead, the contribution of humoral response is still unclear, even if the presence of intrathecal antibodies and B-cells follicle-like structures in meninges of patients has been demonstrated. Several myelin and non-myelin antigens have been identified, but none has been validated as humoral biomarker. In particular autoantibodies against myelin proteins have been found also in healthy individuals, whereas non-myelin antigens have been implicated in neurodegenerative phase of the disease. To provide further putative autoantigens of multiple sclerosis, we investigated the antigen specificity of immunoglobulins present both in sera and in cerebrospinal fluid of patients using phage display technology in a new improved format. A human brain cDNA phage display library was constructed and enriched for open-read-frame fragments. This library was selected against pooled and purified immunoglobulins from cerebrospinal fluid and sera of multiple sclerosis patients. The antigen library was also screened against an antibody scFv library obtained from RNA of B cells purified from the cerebrospinal fluid of two relapsing remitting patients. From all biopanning a complex of 14 antigens were identified; in particular, one of these antigens, corresponding to DDX24 protein, was present in all selections. The ability of more frequently isolated antigens to discriminate between sera from patients with multiple sclerosis or other neurological diseases was investigated. The more promising novel candidate autoantigens were DDX24 and TCERG1. Both are implicated in RNA modification and regulation which can be altered in neurodegenerative processes. Therefore, we propose that they could be a marker of a particular disease activity state.
2019
5-dic-2019
Pubblicato
File in questo prodotto:
File Dimensione Formato  
journal_pone_0226162.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.68 MB
Formato Adobe PDF
1.68 MB Adobe PDF Visualizza/Apri
supp. mat..pdf

accesso aperto

Descrizione: Supplementary material
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 475.24 kB
Formato Adobe PDF
475.24 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2954351
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact