We provide a sharp quantitative version of the Gaussian concentration inequality: for every $r>0$, the difference between the measure of the $r$-enlargement of a given set and the $r$-enlargement of a half-space controls the square of the measure of the symmetric difference between the set and a suitable half-space. We also prove a similar estimate in the Euclidean setting for the enlargement with a general convex set. This is equivalent to the stability of the Brunn-Minkowski inequality for the Minkowski sum between a convex set and a generic one.
Robustness of the Gaussian concentration inequality and the Brunn-Minkowski inequality
Barchiesi Marco;
2017-01-01
Abstract
We provide a sharp quantitative version of the Gaussian concentration inequality: for every $r>0$, the difference between the measure of the $r$-enlargement of a given set and the $r$-enlargement of a half-space controls the square of the measure of the symmetric difference between the set and a suitable half-space. We also prove a similar estimate in the Euclidean setting for the enlargement with a general convex set. This is equivalent to the stability of the Brunn-Minkowski inequality for the Minkowski sum between a convex set and a generic one.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
concentration.pdf
accesso aperto
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Copyright Editore
Dimensione
141.29 kB
Formato
Adobe PDF
|
141.29 kB | Adobe PDF | Visualizza/Apri |
paper-14.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
455.24 kB
Formato
Adobe PDF
|
455.24 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.