We devise a novel inference algorithm to effectively solve the cancer progression model reconstruction problem. Our empirical analysis of the accuracy and convergence rate of our algorithm, CAncer PRogression Inference (CAPRI), shows that it outperforms the state- of-the-art algorithms addressing similar problems. Motivation: Several cancer-related genomic data have become available (e.g., The Cancer Genome Atlas, TCGA) typically involving hundreds of patients. At present, most of these data are aggregated in a cross-sectional fashion providing all measurements at the time of diagnosis. Our goal is to infer cancer “progression” models from such data. These models are represented as directed acyclic graphs (DAGs) of collections of “selectivity” relations, where a mutation in a gene A “selects” for a later mutation in a gene B. Gaining insight into the structure of such progressions has the potential to improve both the stratification of patients and personalized therapy choices. Results: The CAPRI algorithm relies on a scoring method based on a probabilistic theory developed by Suppes, coupled with bootstrap and maximum likelihood inference. The resulting algorithm is efficient, achieves high accuracy, and has good complexity, also, in terms of convergence properties. CAPRI performs especially well in the presence of noise in the data, and with limited sample sizes. Moreover CAPRI, in contrast to other approaches, robustly reconstructs different types of confluent trajectories despite irregularities in the data. We also report on an ongoing investigation using CAPRI to study atypical Chronic Myeloid Leukemia, in which we uncovered non trivial selectivity relations and exclusivity patterns among key genomic events. an interesting selectivity relation connecting SETBP1 (missense point) and ASXL1 (nonsense point), as previously conjectured. Availability: CAPRI is part of the TRanslational ONCOlogy R package and is freely available on the web at: http://bimib.disco.unimib.it/index.php/Tronco

CAPRI: Efficient Inference of Cancer Progression Models from Cross-sectional Data

Caravagna G;
2015-01-01

Abstract

We devise a novel inference algorithm to effectively solve the cancer progression model reconstruction problem. Our empirical analysis of the accuracy and convergence rate of our algorithm, CAncer PRogression Inference (CAPRI), shows that it outperforms the state- of-the-art algorithms addressing similar problems. Motivation: Several cancer-related genomic data have become available (e.g., The Cancer Genome Atlas, TCGA) typically involving hundreds of patients. At present, most of these data are aggregated in a cross-sectional fashion providing all measurements at the time of diagnosis. Our goal is to infer cancer “progression” models from such data. These models are represented as directed acyclic graphs (DAGs) of collections of “selectivity” relations, where a mutation in a gene A “selects” for a later mutation in a gene B. Gaining insight into the structure of such progressions has the potential to improve both the stratification of patients and personalized therapy choices. Results: The CAPRI algorithm relies on a scoring method based on a probabilistic theory developed by Suppes, coupled with bootstrap and maximum likelihood inference. The resulting algorithm is efficient, achieves high accuracy, and has good complexity, also, in terms of convergence properties. CAPRI performs especially well in the presence of noise in the data, and with limited sample sizes. Moreover CAPRI, in contrast to other approaches, robustly reconstructs different types of confluent trajectories despite irregularities in the data. We also report on an ongoing investigation using CAPRI to study atypical Chronic Myeloid Leukemia, in which we uncovered non trivial selectivity relations and exclusivity patterns among key genomic events. an interesting selectivity relation connecting SETBP1 (missense point) and ASXL1 (nonsense point), as previously conjectured. Availability: CAPRI is part of the TRanslational ONCOlogy R package and is freely available on the web at: http://bimib.disco.unimib.it/index.php/Tronco
Pubblicato
https://academic.oup.com/bioinformatics/article/31/18/3016/240499
File in questo prodotto:
File Dimensione Formato  
btv296.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2956311
Citazioni
  • ???jsp.display-item.citation.pmc??? 26
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 51
social impact