The dynamics of Bose-Einstein condensates trapped in a deep optical lattice is governed by a discrete nonlinear equation (DNL). Its degree of nonlinearity and the intersite hopping rates are retrieved from a nonlinear tight-binding approximation taking into account the effective dimensionality of each condensate. We derive analytically the Bloch and the Bogoliubov excitation spectra, and the velocity of sound waves emitted by a traveling condensate. Within a Lagrangian formalism, we obtain Newtonian-like equations of motion of localized wavepackets. We calculate the ground-state atomic distribution in the presence of an harmonic confining potential, and the frequencies of small amplitude dipole and quadrupole oscillations. We finally quantize the DNL, recovering an extended Bose-Hubbard model.

Nonlinear tight-binding approximation for Bose-Einstein condensates in a lattice

Trombettoni, A
2003-01-01

Abstract

The dynamics of Bose-Einstein condensates trapped in a deep optical lattice is governed by a discrete nonlinear equation (DNL). Its degree of nonlinearity and the intersite hopping rates are retrieved from a nonlinear tight-binding approximation taking into account the effective dimensionality of each condensate. We derive analytically the Bloch and the Bogoliubov excitation spectra, and the velocity of sound waves emitted by a traveling condensate. Within a Lagrangian formalism, we obtain Newtonian-like equations of motion of localized wavepackets. We calculate the ground-state atomic distribution in the presence of an harmonic confining potential, and the frequencies of small amplitude dipole and quadrupole oscillations. We finally quantize the DNL, recovering an extended Bose-Hubbard model.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2956764
 Avviso

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 124
  • ???jsp.display-item.citation.isi??? 130
social impact