We study the debated contribution from thermally pulsing asymptotic-giant-branch (TP-AGB) stars in evolutionary population synthesis models. We investigate the spectral energy distributions (SEDs) of a sample of 51 spectroscopically confirmed, high-z (1.3 < z(spec) < 2.7), galaxies using three evolutionary population synthesis models with strong, mild and light TP-AGB. Our sample is the largest of spectroscopically confirmed galaxies on which such models are tested so far. Galaxies were selected as passive, but we model them using a variety of star formation histories in order not to be dependent on this pre-selection. We find that the observed SEDs are best fitted with a significant contribution of TP-AGB stars or with substantial dust attenuation. Without including reddening, TP-AGB-strong models perform better and deliver solutions consistent within 1 sigma from the best-fitted ones in the vast majority of cases. Including reddening, all models perform similarly. Using independent constraints from observations in the mid-and far-IR, we show that low/negligible dust attenuation, i.e. E(B - V) less than or similar to 0.05, should be preferred for the SEDs of passively selected galaxies. Given that TP-AGB-light models give systematically older ages for passive galaxies, we suggest number counts of passive galaxies at higher redshifts as a further test to discriminate among stellar population models.
Revisiting the role of the thermally pulsating asymptotic-giant-branch phase in high-redshift galaxies
Strazzullo V;
2016-01-01
Abstract
We study the debated contribution from thermally pulsing asymptotic-giant-branch (TP-AGB) stars in evolutionary population synthesis models. We investigate the spectral energy distributions (SEDs) of a sample of 51 spectroscopically confirmed, high-z (1.3 < z(spec) < 2.7), galaxies using three evolutionary population synthesis models with strong, mild and light TP-AGB. Our sample is the largest of spectroscopically confirmed galaxies on which such models are tested so far. Galaxies were selected as passive, but we model them using a variety of star formation histories in order not to be dependent on this pre-selection. We find that the observed SEDs are best fitted with a significant contribution of TP-AGB stars or with substantial dust attenuation. Without including reddening, TP-AGB-strong models perform better and deliver solutions consistent within 1 sigma from the best-fitted ones in the vast majority of cases. Including reddening, all models perform similarly. Using independent constraints from observations in the mid-and far-IR, we show that low/negligible dust attenuation, i.e. E(B - V) less than or similar to 0.05, should be preferred for the SEDs of passively selected galaxies. Given that TP-AGB-light models give systematically older ages for passive galaxies, we suggest number counts of passive galaxies at higher redshifts as a further test to discriminate among stellar population models.File | Dimensione | Formato | |
---|---|---|---|
stv2692.pdf
accesso aperto
Descrizione: This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2015 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Tipologia:
Documento in Versione Editoriale
Licenza:
Digital Rights Management non definito
Dimensione
3.6 MB
Formato
Adobe PDF
|
3.6 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.