We consider mappings U=(u1,u2), whose components solve an arbitrary elliptic equation in divergence form in dimension two, and whose respective Dirichlet data φ1,φ2 constitute the parametrization of a simple closed curve γ. We prove that, if the interior of the curve γ is not convex, then we can find a parametrization Φ=(φ1,φ2) such that the mapping U is not invertible.
Breaking through borders with σ-harmonic mappings
Giovanni Alessandrini;
2020-01-01
Abstract
We consider mappings U=(u1,u2), whose components solve an arbitrary elliptic equation in divergence form in dimension two, and whose respective Dirichlet data φ1,φ2 constitute the parametrization of a simple closed curve γ. We prove that, if the interior of the curve γ is not convex, then we can find a parametrization Φ=(φ1,φ2) such that the mapping U is not invertible.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
100.pdf
accesso aperto
Descrizione: This work is licensed under a Creative Commons Attribution 4.0 International License.
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
145.95 kB
Formato
Adobe PDF
|
145.95 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.