We consider mappings U=(u1,u2), whose components solve an arbitrary elliptic equation in divergence form in dimension two, and whose respective Dirichlet data φ1,φ2 constitute the parametrization of a simple closed curve γ. We prove that, if the interior of the curve γ is not convex, then we can find a parametrization Φ=(φ1,φ2) such that the mapping U is not invertible.

Breaking through borders with σ-harmonic mappings

Giovanni Alessandrini;
2020-01-01

Abstract

We consider mappings U=(u1,u2), whose components solve an arbitrary elliptic equation in divergence form in dimension two, and whose respective Dirichlet data φ1,φ2 constitute the parametrization of a simple closed curve γ. We prove that, if the interior of the curve γ is not convex, then we can find a parametrization Φ=(φ1,φ2) such that the mapping U is not invertible.
File in questo prodotto:
File Dimensione Formato  
100.pdf

accesso aperto

Descrizione: This work is licensed under a Creative Commons Attribution 4.0 International License.
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 145.95 kB
Formato Adobe PDF
145.95 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2957785
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact