For any locally free coherent sheaf on a fixed smooth projective curve, we study the class, in the Grothendieck ring of varieties, of the Quot scheme that parametrizes zero-dimensional quotients of the sheaf. We prove that this class depends only on the rank of the sheaf and on the length of the quotients. As an application, we obtain an explicit formula that expresses it in terms of the symmetric products of the curve.
On the motive of Quot schemes of zero-dimensional quotients on a curve
Massimo Bagnarol
;Fabio Perroni
2020-01-01
Abstract
For any locally free coherent sheaf on a fixed smooth projective curve, we study the class, in the Grothendieck ring of varieties, of the Quot scheme that parametrizes zero-dimensional quotients of the sheaf. We prove that this class depends only on the rank of the sheaf and on the length of the quotients. As an application, we obtain an explicit formula that expresses it in terms of the symmetric products of the curve.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BFP_NYJM_2020.pdf
accesso aperto
Descrizione: La rivista utilizza il modello di accesso aperto diamante -cioè, il suo contenuto completo è disponibile a chiunque via Internet, senza un abbonamento o di pagamento
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
600.07 kB
Formato
Adobe PDF
|
600.07 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.